博碩士論文 966204010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.230.1.126
姓名 林怡君(Yii-jun Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響
(Effect of Particle Size on Evolution of Porosity and Hydraulic Conductivity Induced by Dissolution and Precipitation in Packed bed of calcium carbonate minerals)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 有限長度圓形土柱實驗二維溶質傳輸之解析解★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展
★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響★ 關渡平原地下水流動模擬
★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度★ 關渡濕地沉積物中砷之地化循環與分布
★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域★ 推估土壤傳輸參數現地試驗方法改進與數學模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下流體與多孔隙介質礦物顆粒間產生地球化學反應,伴隨著孔隙率與水力傳導係數變化,此現象在科學、工程與工業領域皆為重要之研究議題。本研究進行一系列批次表面反應實驗及管柱流動實驗,進而瞭解流體流經碳酸鈣產生溶解與沈澱反應對孔隙率與水力傳導係數之變化。利用鹽酸HCl(aq) 及硫酸H2SO4(aq) 兩種溶液作為地下流體以加速反應速率。以測壓計測量水位,記錄管柱兩邊壓力差以達西定律計算水力傳導係數;測量出流水中鈣離子與硫酸根離子之濃度,以便計算孔隙率變化。管柱流動實驗結束,將管柱之碳酸鈣礦石填充床取出,進一步進行碳酸鈣微觀型態與礦物組成分析。研究結果發現碳酸鈣之粒徑與溶解/沈澱彼此競爭以致孔隙率與水力傳導係數有震盪的情形;SEM觀測得知石膏沈澱皆於進流口,以上現象皆與理論相符。
摘要(英) Investigation of chemical reactions between a fluid and the porous medium through which it flows, and of the subsequent changes in the medium porosity and hydraulic conductivity, is an area of interest for many scientific, industrial and engineering. Dissolution and precipitation are two of the most important processes affecting fluid chemistry, and they can significantly modify the physical and chemical properties of porous media. In this study, we investigate the effect of particle size of carbonate rock on temporal evolution of porosity and hydraulic conductivity induced by dissolution and precipitation by performing a series of laboratory surface reaction experiment and column flow experiment by injecting HCl/H2SO4. The temporal evolution of overall hydraulic conductivity is calculated by measurement of change in hydraulic head gradient and application of Darcy’s law. Variation in porosity is obtained by analyzing the effluent acid for Ca2+ and and invoking the law of mass balance. Furthermore, after each experiment, the column sample is retrieved and sectioned in order to study the micro-morphology and mineral composition. Results show that significant fluctuations in porosity and hydraulic conductivity occur due to competition between dissolution and precipitation. The patterns of fluctuations in porosity and hydraulic conductivity are influenced by particle size of calcium carbonate. SEM analysis shows that gypsum precipitates in the inlet of the column. These findings are in qualitative agreement with conceptual understanding of such phenomena.
關鍵字(中) ★ 水力傳導係數
★ 孔隙率
★ 沈澱反應
★ 溶解反應
關鍵字(英) ★ porosity
★ hydraulic conductivity
★ calcium carbonate
★ precipitation
★ dissolution
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 前言 1
1-1研究背景 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1孔隙率(porosity) 3
2-2水力傳導係數(hydraulic conductivity) 3
2-3地球化學反應對孔隙率與水力傳導 4
2-4溶解/沈澱反應改變孔隙率相關研究 5
2-4-1模式模擬 5
2-4-2實驗室實驗 6
第三章 材料與研究方法 8
3-1研究架構與實驗流程 8
3-2 實驗設備及材料 10
3-2-1實驗設備 10
3-2-2 實驗材料 10
3-3實驗方法 11
3-3-1 孔隙介質碳酸鈣前處理 11
3-3-2 酸性溶液製備 11
3-3-3批次溶解反應試驗 13
3-3-4管柱流動實驗 15
3-4 分析方法 18
3-4-1鈣離子濃度- EDTA滴定 18
3-4-2硫酸根離子濃度-離子層析法 20
3-4-3 掃描式電子顯微鏡/元素能量分析儀 (Scanning Electron Microscopy/ Energy-Dispersive Spectrometer ,SEM/EDS) 21
第四章 結果討論 22
4-1 批次溶解反應實驗結果 22
4-2管柱流動實驗 25
4-2-1溶解/沈澱導致孔隙率與水力傳導係數變化 25
4-2-2反應後硫酸根離子、鈣離子與pH值之變化 29
4-2-3小結 29
4-3碳酸鈣微觀變化之電子顯微鏡觀察及元素成分分析 33
第五章 結論與建議 44
5-1結論 44
5-2建議 45
參考文獻 46
參考文獻 [1]Dijk, P. and B. Berkowitz, “Precipitation and dissolution of reactive solutes in fractures’’, Water Resources Research, 34, 457-470, 1998.
[2]Bolton, E. W., A. C. Lasaga, and D. M. Rye, “A model for the kinetic controlof quartz dissolution and precipitation in porous media flow with spatially variable permeability: Formulation and examples of thermal convection’’, Journal of Geophysical Research, 89, 4009-4025, 1984.
[3]Palmer, A. N., “Rates of limestone dissolution and calcite precipitation in cave streams of east-central New York State’’, Geological Society of America, 89, 227-264, 1996.
[4]Dijk, P. and B. Berkowitz, “Buoyancy-driven dissolution enhancement in rock fractures’’, Geology , 28 , 1051– 1054, 2000.
[5]Darmody, R. G., C. E. Thorn, R. L. Harder, J. P. L. Schlyter, and J. C. Dixon, “Weathering implications of water chemistry in an arctic-alpine environment, north Sweden’’, Geomorphology , 34, 89–100, 2000.
[6]陳文山,「台灣的岩石」,2002年岩盤工程研討會論文集,21-22, 中華大學,台灣新竹,2002年。
[7]何春蓀,「普通地質學」,三版,五南圖書出版公司,民國93年。
[8]陳錦芳,「恆春地區石灰岩地層之地化模擬」,國立臺灣大學,碩士論文,民國81年。
[9]林財富,「土壤與地下水污染:原理與應用」,中華民國環境工程學會,民國97年。
[10]張元耀,「孔隙率與化學反應之交互作用之溶質傳輸歷程」,國立臺灣大學,碩士論文,民國95年。
[11]Liu, C.W. and J.F. Chen, “The simulation of geochemical reactions in the Heng-Chung limestone formation’’, Applied Mathematical Modeling, 20, 549–558, 1996.
[12]De Graaff, J. W. M., and R. D. Schuiling, “Geochemical engineering in chalk: Neutralization of waste sulfuric acid’’, Annales Societatis Geologorum , 5, 345– 350 , 1997.
[13]Chadam, J., P. Ortoleva and A. Sen, “ Reactive-infiltration instabilities” , IMA Journal of Applied Mathematics, 36, 207–220, 1986.
[14]Sherwood, “ Stability of a plane reaction front in a porous medium” , Chemical Engineering Science , 42, 1823–1829, 1987.
[15]Hinch, E. J. and B. S. Bhatt, “ Stability of an acid front moving through rock” , Journal of Fluid Mechanics , 212, 279–288, 1990.
[16]Liu, X., A. Ormond, K. Bartko, Y. Li, and P. Ortoleva, “ A geochemical reaction-transport simulator for matrix aciding analysis andd esign” , Journal of Petroleum Science &Engineering, 17, 181–196, 1997.
[17]Hoefner, M. L. and H. S. Fogler r, “Influence of transport and reaction on wormhole formation in porous media”, AIChE journal, 44, 1933-1949, 1998.
[18]Fogler, H. S. and S. D. Rege, “ Porous dissolution reactors’’,
Chemical Engineering Communications, 42, 291–313, 1986.
[19]Singurindy, O. and B. Berkowitz, “Carbonate dissolution and precipitation in coastal environments: Laboratory analysis and theoretical consideration’’, Water Resources Research, 41, doi:10.1029/2005WR004433, 2005.
[20]Singurindy, O. and B. Berkowitz, “The role of fractures on coupled dissolution and precipitation patterns in carbonate rocks” , Advances in Water Resources, 28, 507–521, 2005.
[21]Singurindy, O. and B. Berkowitz, “Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock”, Water Resources Research, 39, doi: 10.1029/2001WR001055, 2003.
[22]行政院環境檢測所,水中鹼度檢測方法-滴定法(NIEA W449.0B),民國92年。
[23]Krauskopf, K. B., “Introduction to Geochemistry’, McGraw-Hill, New York, 1967.
[24]行政院環境檢測所,水中總硬度檢測方法—EDTA滴定法(NIEA W208.51A),民國95年。
[25]Hoefner, M. L, H. S. Fogler, P. Stenius, and J. Sjoblom, “ Role of aciddiffusion in matrix acidizing of carbonates’’, Journal of petroleum technology, 32, 203– 208, 1987.
[26]Sudmalis, M. and R. Scheikholeslami, “Coprecipitation of CaCO3 and CaSO4”, Canadian Journal of Chemical Engineering, 78, 21–31, 2000.
[27]Hall, C. and D. C. Cullen, “Scanning force microscopy of gypsum dissolution and crystal growth”, AIChE Journal, 42, 232–238, 1996.
[28] Helfferich, F. G., “The theory of precipitation/dissolution waves”, AIChE Journal, 35, 75– 87, 1989.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2009-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明