博碩士論文 966204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.215.62.41
姓名 吳嘉倫(Chia-Lun Wu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 異向含水層部分貫穿井溶質傳輸分析
(Analysis of solute transport toward a partially penetrating extraction well in an anisotropic aquifer)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響
★ 有限長度圓形土柱實驗二維溶質傳輸之解析解★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展
★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響★ 關渡平原地下水流動模擬
★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度★ 關渡濕地沉積物中砷之地化循環與分布
★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域★ 推估土壤傳輸參數現地試驗方法改進與數學模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 抽出處理法為傳統含水層整治技術,其方法為抽出含水層中受污染的地下水,降低其污染濃度至達到整治標準,有效的抽出處理系統設計應收集全部的污染物,並抽取最小量鄰近污染物的乾淨地下水。現地實務上,含水層只有部分垂直厚度受污染時,此時整治系統可以考慮採用部分貫穿井作為設計依據。本研究發展異向受壓含水層部份貫穿井溶質傳輸之數學模式,首先求解部分貫穿井抽水的穩態洩降解,利用洩降解可計算孔隙流速於水平與垂直方向之分量,所得流速可以建立二維圓柱座標移流-延散傳輸方程式,藉由Laplace轉換有限差分法求解,可得含水層中的溶質濃度分布;所得模式將用以分析井篩長度、含水層水力傳導係數異向比、縱向延散度及含水層延散度異向比等對溶質傳輸之影響,模擬結果顯示在含水層水力傳導係數異向比越大,縱向延散度越小的情況,將顯著影響部分貫穿井整治效率,其與全層貫穿井達到整治標準所需之時間差至2.5倍。本研究所發展之模式可作為部分貫穿井用於含水層整治系統設計之工具。
摘要(英) Pump-and-treat techniques are often applied to extract the polluted groundwater and to reduce the concentration of the contaminants to an acceptable level. The design of an effective and efficient pump-and-treat system requires that the recovery wells collect the contaminant and withdraws the minimum amount of clean water adjacent to the contaminant plume. The installation of a partially penetrating well in which only a portion of the well casing is screened is becoming more common because it is very often the case that only a portion of the vertical thickness of the aquifer is contaminated. In this study, a novel mathematical model describing the solute transport around a partially penetrating well is presented. To build the new model, the radial and vertical components of the pore water velocity are first computed using an analytical solution for the steady-state drawdown distribution near a partially penetrating well. Next, the obtained radial and vertical components of the pore water velocity are incorporated into a two-dimensional advection-dispersion equation in cylindrical coordinates from which the solute transport equation is derived. The developed model is used to investigate the effects of the site-specific aquifer parameters on solute transport near a partially penetrating well. Results demonstrate that the effect of the partially penetrating well on solute transport is significant when there is a large hydraulic conductivity anisotropy ratio and small longitudinal dispersivity. The mathematical model presented herein provides a useful tool for designing an effective and efficient pump-and-treat system for partially penetrating well.
關鍵字(中) ★ 捕集區
★ 縱向延散度
★ 水力傳導係數異向比
★ 部分貫穿井
關鍵字(英) ★ longitudinal dispersivity
★ capture zone
★ partially penetrating well
★ hydraulic conductivity anisotropy ratio
論文目次 摘要 ...........................................i
Abstract ..........................................ii
誌謝 .........................................iii
圖目錄 ..........................................vi
表目錄 ..........................................ix
符號說明 ...........................................x
一、緒論 ...........................................1
1.1前言 ...........................................1
1-2文獻回顧 ..................................5
1-3研究目的 ..................................7
1-4研究流程 ..................................7
二、部分貫穿井水流與溶質傳輸數學模式 ................8
2-1水流方程式與邊界條件 ........................12
2-2溶質傳輸方程式與邊界條件 ........................19
2-3水流方程式求解 .................................26
2-4溶質傳輸方程式求解 ........................33
三、結果與討論 .................................41
3-1 模式驗證 .................................41
3-2 模擬參數與條件 .................................48
3-3污染團分布於整個含水層垂直厚度 ...............52
3-4污染團分布於含水層垂直厚度底部二公尺區域 ......64
四、結論與建議 ..................................82
4-1結論 ...........................................82
4-2 建議 ...........................................83
參考文獻 [1]Mercer, J. W., D. C. Skipp, and D. Giffin., 1990. Basics of pump and treat groundwater remediation technology. U.S. Environmental Protection Agency. EPA-600/8-90/003.
[2]Gorelick, S. M., R. A. Freeze, D. Donohue, and J. F. Keely, 1993. Groundwater Contamination, Optimal Capture and Contaminment, Lewis Publishers, Boca Raton, FL.385 pp.
[3]U.S. EPA, 1997. Design Guidelines for Conventional Pump-and-Treat Systems, EPA/540/S-97/504.
[4]Bair, E. S., T. D. Lahm, 1996. Variations in Capture-Zone Geometry of a Partially Penetrating Pumping Well in an Unconfined Aquifer. Ground Water, 34(5), 842-852.
[5]Nicholson, R.V., J. A. Cherry, and E. J. Reardon, 1983. Migration of contaminants in groundwater at a landfill: A case study, 6. Hydrogeochemistry. Journal of Hydrology, 63, 131-176.
[6]Javandel, I. and C. F. Tsang, 1986. Capture-zone type curves: A tool for aquifer cleanup. Ground water, 24(5), 616-625.
[7]Hantush, M. S., 1964. Hydraulics of wells, in V.T Chow(editor), Advances in Hydroscience, vol. 1, 281-432. Academic Press, New York and London.
[8]Faybishenko, B. A., I. Javandel, and P. A. Witherspoon, 1995. Hydrodynamics of the capture zone of a partially penetrating well in a confined aquifer. Water Resources Research, 31(4), 859-866.
[9]Goldberg, V.M. 1976. Hydrogeological Prediction of Groundwater Quality in Water Supply Systems. Nedra, Moscow(in Russian). 151.
[10]Kinzelbach, W. 1983. Sanierungsmassnahmen in vorfeld von trinkwasserfassungen. In: Vermeidung und Sanierung von Groundwasserverunreinigungen, DVGW-Schriftenreihe Wasser, Nr. 36, Eschbon, 93-107(in German).
[11]Kinzelbach, W. 1986.Groundwater Modeling. Elsevier, New York.
[12]Zlotnik, V. A., 1997. Effects of anisotropy on the capture zone of a partially penetrating well. Ground Water, 35(5), 842-847.
[13]Muskat, M.,1937. The flow of homogeneous fluids through porous media. Mcgraw-Hill, New York.
[14]Hantush, M. S.1961.Drawdown around a partially penetrating well. J. Hydrology. Div. Am. Soc. Civ. Eng. 87 (HY4), 83-98.
[15]Conant, B. Jr., F. F. Akindunni, and R. W. Gillham, 1995. Effect of well-screen placement on recovery of vertically stratified contaminants. Ground Water, 33(3), 445-457.
[16]Williams, P.D., 1991. Dilution effects during sampling of a 2-inch monitoring well in a confined aquifer. Master’s project. Environmental Engineering Dcpartment, University of Massachusetts at Lowell.
[17]Cosler, D. J., 1997. Ground-water sampling and time-series evaluation techniques to determine vertical concerntration distributions. Ground Water, 35(5), 825-841.
[18]Gelhar, L.W., C. Welty, K.R. Rehfeldt, 1992. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resources Research, 28(7), 1955-1974.
[19]Ridolfi, L., S. Sordo, 1997. Hydrodynamic dispersion in an artesian during flow to a partially penetrating well. Journal of Hydrology, 201: 183-210.
[20]Sudicky, E.A., 1989. The Laplace transform Galerkin technique: a time-continuous finite element theory and application to mass transport in groundwater. Water Resources Research, 25(8), 1833-1846.
[21]Moridis, G.J., D.L. Reddel, 1991. The Laplace transform finite difference method for simulation of flow through porous media. Water Resources Research, 27(8), 1873-1884.
[22]De Hoog, F.R., J. H. Knight, and A. N. stokes, 1982. An imporved method for numerical inversion of Laplace transforms. Journal on Scientific and Statistical Computing, 3(3), 357-366.
[23]Crump, K.S., 1976. Numerical inversion of Laplace transforms using a Fourier Series approximation. Journal of Association for Computing Machinery, 23(1), 89-96.
[24]Chen, C.S., G.D. Woodside, 1988. Analytical modeling for aquifer decontamination by pumping. Water Resources Research, 24(8), 1329-1338.
[25]Chen, J.S., C.P. Liang, H.S. Gau, C.W. Liu, 2006. Mathematical model for formation decontamination by pumping with well bore mixing. Applied Mathematical Modelling, 30, 446–457.
[26]Bear, J., 1979. Groundwater Hydraulics. McGraw-Hill, New York.
[27]Visual Numerical, Inc. 1994. IMSL User’s Manual. Houston, Tex., 1, 159-161.
[28]Visual Numerical, Inc. 1994. IMSL User’s Manual. Houston, Tex., 1, 827-830.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明