博碩士論文 966402003 詳細資訊


姓名 杜文斌(Wen-Bin Doo)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 解析訊號與尤拉解迴旋方法的發展與應用
(Development and applications of analytic signal and Euler deconvolution methods)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磁力與重力資料經常用來研究和探討地質構造上的特性,其中大部份的應用是要找到地下構造的位置。為了達成這個目的,資料分析的方法就成為很重要的一環,其中解析訊號與尤拉解迴旋方法是廣為大家所使用的方法,使用這兩種方法的主要好處是它可以在不受到地磁場其他未知參數的影響之下求得地下物質的深度、位置及幾何形貌。本研究中以解析訊號及尤拉解迴旋方法為主要基礎,進一步發展出新的方法並討論其應用。
首先結合解析訊號與尤拉解迴旋方法來計算二維磁源參數,如此,地下構造的位置、深度、構造指標、磁化強度差及構造傾角等參數可經由此新方法的計算得知。另外可藉由此方法來計算地磁反轉邊界因地磁場變化而產生的磁化強度差。有了反轉邊界磁化強度差的資訊,在做磁力定年模擬時,磁化層在不同年代就不用給定相同的磁化強度,這可使得計算結果更符合真實狀況。本論文以Brunhes-Matuyama地磁場反轉邊界為例來探討此想法的可行性。
泊松理論在重力與磁力位間提供了一個簡單的關係式,在這關係式下磁化強度與密度的比值可以被求得。在此論文中,我們將泊松關系式加入了解析訊號的應用,則磁化強度與密度的比值可以直接利用重力與磁力資料求得,而不需要經由逆推方法計算地下物質的密度及磁化強度。經由計算所得之磁化強度與密度比值的分佈可作為我們區分地下岩性時的參考依據。將此方法應用在台灣北部外海區域,比對在此區域內的反射震測剖面結果,發現此方法可以辨識出在棉花嶼及彭佳嶼區域較深部的火成物體。
最後,本論文實際探討2009年莫拉克颱風在台灣南部引發了土石流,而掩蓋了小林村大部分的建築物的探測。論文中分析在土石流發生後所收集的磁力資料,經由比對災前建築物的位置與研究區域內磁力資料分析的結果,可得知高解析磁力探測可以有效地解析被掩埋建築物的位置,而磁力資料計算所得的可能建築物埋深約5-10公尺。另外由磁力資料分析結果可推測在小林村北邊的建築物幾乎都被沖毀,而在南邊的建築物則大部分都還保留在原地,藉此結果也可推測土石流的方向可能是N250°。
摘要(英) Magnetic and gravity data are generally used to discuss geological structure characteristics, and the most applications are used to determine the location of the sources. Among the interpretation techniques, the methods of the analytic signal and Euler deconvolution have been widely adopted for these purposes. The major advantage of using these two techniques is that the determination of magnetic source locations and depths is independent of the ambient earth magnetic parameters. In this thesis, generally based on the analytic signal and Euler deconvolution we attempt to develop new methods and then discuss its applications.
We have developed a new method by using the joint analysis of analytic signal and Euler deconvolution to estimate the parameters of 2D magnetic sources, especially to identify the horizontal locations, depths, structural types (indices), magnetization contrasts and structural dips. Furthermore, this method is used to estimate the possible magnetization contrast of geomagnetic reversals. This information could be a useful constrain for geomagnetic age modeling. Thus, one does not need to assume a constant magnetization of the magnetized layer in the modeling. This could make the synthetic magnetic anomaly more realistic. This method has been tested to determine the magnetization contrast of the Brunhes-Matuyama boundary of geomagnetic reversal.
The Poisson theorem provides a simple relationship between the gravity and magnetic potentials. Based on the simple Poisson theorem, magnetization/density ratio (MDR) can be estimated. Here, we combined the Poisson theorem and analytic signal technique to estimate MDR. Follow this method the MDR values can be determined from gravity and magnetic data. Apply this method to a profile across the offshore area of the northern Taiwan. In comparison with the reflection seismic profile, it shows that the method can help us to identify the existence of a deep-seated igneous body beneath the area of Mienhuayu and Pengchiagu islands off northern Taiwan.
Finally, we show a magnetic survey result for the purpose of detecting buried buildings of Siaolin Village in southern Taiwan after the catastrophic landslide induced by Typhoon Morakot in 2009. Compared the original locations of buildings with the magnetic data analysis results, high-resolution magnetic survey can effectively identify positions of buried buildings in Siaolin Village. The estimated depths of the possible buried buildings are about 5-10 meters deep. In addition, magnetic data analysis can further suggest the possible debris-flow direction of N250o, because the northern part of village was mostly destroyed off while the southern part of village buildings remained in place.
關鍵字(中) ★ 解析訊號
★ 尤拉解迴旋
關鍵字(英) ★ Euler deconvolution
★ analytic signal
論文目次 摘要 i
Abstract iii
誌謝 v
Contents vii List of figures x
List of tables xiii
1. Introduction 1
1.1 Previous studies..………………………………………………………………1
1.1.1 Analytic signal…………………………………………………………1
1.1.2 Euler deconvolution…………………………………………………3
1.1.3 Other methods……………………………………………………….4
1.2 Purpose of the thesis……….……………………….………………………5
2. A derivative-based interpretation approach to estimate source parameters of simple 2D magnetic sources from the Euler deconvolution, the Analytic Signal method, and the analytical expressions of the anomalies 9
2.1 Introduction……………………………………………………………………9
2.2 Methodology………………………………………..………………………10
2.2.1 Case of contact or fault model………………………………………11
2.2.2 Case of thin dike model………………..……………………………12
2.2.3 Case of cylinder model………………..……….……………………13
2.3 Tests on synthetic data……………………………..…………………………14
2.3.1 Contact model (model 1)……………………………………………14
2.3.2 Thin dike model (model 2)…………………………………………15
2.3.3 Cylinder model (model 3)…………………………..………………16
2.3.4 Composite model (model 4 and 5)………………...…………………16
2.4 Real example……………………..…………………..………………………18
2.5 Summary...……………………………………………………………………19
3. Determination of magnetization contrasts of geomagnetic polarity reversals 28
3.1 Introduction…………………………………………………………………28
3.2 Methodology………………………………………..………………………29
3.3 Data…………………………………………………………………………30
3.4 Results………………………………………………………………………31
3.5 Discussion and Summary……………………………………………………32
4. Using Analytic signal to determine magnetization/density ratios of geological structures 42
4.1 Introduction…………………………………………………………………42
4.2 Methodology………………………………………..………………………43
4.3 Synthetic models…………………………………..…………………………45
4.3.1 2D model ……………...……………………………………………45
4.3.2 3D models ……………...……………………………………………45
4.4 Density and magnetization of general rocks…….…………………………48
4.5 Application to real data……………………………..………………………48
4.5.1 Offshore northern Taiwan ……………...……………………………49
4.5.2 Magnetic and gravity data processing ………………………………49
4.5.3 Seismic Data processing ……………...…….………………………50
4.6 Summary...…………………………………………..………………………52
5. Magnetic signature of the Siaolin Village, southern Taiwan, buried by a catastrophic landslide due to Typhoon Morakot 68
5.1 Introduction…………………………………………………………………68
5.2 Data…………………………………………………………………………70
5.3 Method………………………………………………………………………71
5.4 Results and resolution test……….…………………………………………72
5.5 Discussion……………………….…….……………………………………73
5.6 Summary…………………..…….…….……………………………………76
6. Conclusion 90
Bibliography 92
參考文獻 Bibliography
Blakely, R.J., Geomagnetic reversals and crustal spreading rates during the Miocene, J. Geophys. Res., 79, 2979-2985, 1972.
Briener, S., Applications manual for portable magnetometers, GeoMetrics, Sunnyvale, CA, 1973.
Brown, L.L., Singer, B.S., Pickens, J.C., and Jicha, B.R., Paleomagnetic directions and 40Ar/39Ar ages from the Tatara-San Pedro volcanic complex, Chilean Andes: lava record of a Matuyama-Brunhes precursor? J. Geophys. Res., 109, B12101, doi:10.1029/2004JB003007, 2004.
Camps, C., Henry, B., Prévot, M., and Faynot, L., Geomagnetic paleosecular variation recorded in Plio-Pleistocene volcanic rocks from Possession Island (Crozet Archipelago, southern Indian Ocean), J. Geophys. Res., 106, 1961-1971, 2001.
Cande, S.C., and Kent, D.V., A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 97, 13917-13951, 1992.
Cande, S.C., and Kent, D.V., Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093-6095, 1995.
Cande, S., LaBrecaue, J.L., and Haxby, W.F., Plate kinematics of the South Atlantic: Chron C34 to present, J. Geophys. Res., 93, 13, 13479-13492, 1988.
Chandler, V.W., Koski, J.S., Hinze, W.J., and Braille, L.W., Analysis of multisource gravity and magnetic anomaly data sets by moving-window application of Poisson theorem, Geophysics 46, 30-39, 1981.
Chandler, V.W., and Malek, K.C., Moving-window Poisson analysis of gravity and magnetic data from the Penokean orogen, east-central Minnesota, Geophysics 56, 123-132, 1991.
Chang, P.-Y., Chen, C.-C., Chang, S.-K., Wang, T.-B., Wang, C.-Y., and Hsu, S.-K., An investigation into the debris flow induced by Typhoon Morakot in the Siaolin area, Southern Taiwan, using the electrical-resistivity imaging method, Geophys. J. Int., in press, 2011.
Chauvin, A., Roperch, P., and Duncan, R.A., Records of geomagnetic reversals from volcanic islands of French Polynesia 2. paleomagnetic study of a flow sequence (1.2-0.6 Ma) from the island of Tahiti and discussion of reversal models, J. Geophys. Res., 95, 2727-2752, 1990.
Cordell, L., and Taylor, P.T., Investigation of magnetization and density of a North American seamount using Poisson’s theorem, Geophysics 36, 919-937, 1971.
Crosta, G.B., Chen, H., and Lee, C.F., Replay of the 1987 Val Pola Landslide. Italian Alps. Geomorphology 60, 127-146, 2004.
Debeglia, N., and Corpel, J., Automatic 3-D interpretation of potential field data using analytic signal derivatives, Geophysics 62, 87-96, 1997.
Deschamps, A., Monié, P., Lallemand, S., Hsu, S.-K., and Yeh, K.-Y., Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate, Earth Planet. Sci. Lett., 179, 503-516, 2000.
Doo, W.-B., Hsu, S.-K., and Yeh, Y.-C., A derivative-based interpretation approach to estimating source parameters of simple 2D magnetic sources from Euler deconvolution, the analytic-signal method and analytical expressions of the anomalies, Geophysical Prospecting 55, 255-264, 2007.
Doo, W.-B., Hsu, S.-K., Tsai, C.-H., and Huang, Y.-S., Using analytic signal to determine magnetization/density ratios of geological structures, Geophys. J. Int. 179, 112-124, 2009.
Erdelyi, A., and Magnus, W., et al, Table of integral transforms, Vol. Π: New York, McGraw-Hill Book Co., Inc. 1954.
Fedi, M., and Florio, G.., Detection of potential fields source boundaries by enhanced horizontal derivation method. Geophysical Prospecting 49, 40-58, 2001.
Fedi, M., and Florio, G.., Scalefun: 3D analysis of potential field scaling function to determine independently or simultaneously structural index and depth to source. 76th SEG meeting, New Orleans, Louisiana, USA, Expanded Abstracts, 963-966, 2006.
Fedi, M., DEXP: a fast method to determine the depth and the structural index of potential fields sources, Geophysics 72, I1-I11, 2007.
Garland, G.D., Combined analysis of gravity and magnetic anomalies, Geophysics 16, 51-62, 1951.
Gee, J., Schneider, D.A., and Kent, D.V., Marine magnetic anomalies as recorders of geomagnetic intensity variations, Earth Planet. Sci. Lett., 144, 327-335, 1996.
Grant, F.S., and West, G.F., Interpretation theory in applied geophysics: McGraw-Hill Book Company. 1995.
Grauch, V.J.S., and Cordell, L., Limitations of determining density and magnetic boundaries from the horizontal gradient of gravity or pseudogravity data, Geophysics, 52, 118-124, 1987.
Hansen, R.O., and Suciu, L., Multiple-source Euler deconvolution, Geophysics 67, 525-535, 2002.
Hartman, R.R., Tesbey, D.J., and Friedberg, J.L., A system for rapid digital aeromagmetic interpretation, Geophysics 36, 891-918, 1971.
Hildebrand, T.G., Magnetic terranes in the central United States determined from the interpretation of digital data, in W. J. Hinze, ed., The utility of gravity and anomaly maps, SEG, 248-266, 1985.
Hsu, K.J., Physics of Sedimentology: Textbook and Reference, Springer-Verlag, Berlin. 2004.
Hsu, S.-K., Sibuet, J.-C., and Shyu, C.-T., High-resolution detection of geologic boundaries from potential-field anomalies: an enhanced analytic signal technique. Geophysics 61, 373-386, 1996.
Hsu, S.-K., Liu, C.-S., Shyu, C.-T., Liu, S.-Y., Sibuet, J.-C., Lallemand, S., Wang, C.-S., and Reed, D., New gravity and magnetic anomaly maps un the Taiwan-Luzon region and their preliminary interpretation, TAO, 9, 509-532, 1998a.
Hsu, S.-K., Coppens, D., and Shyu, C.-T., Depth to magnetic source using the generalized analytic signal. Geophysics 63, 1947-1957, 1998b.
Hsu, S.-K., Imaging magnetic sources using Euler’s equation. Geophysical Prospecting 50, 15-25, 2002.
Hsu, S.-K., Yeh, Y.-C. Doo, W.-B., and Tsai, C.-H., New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches 25, 29-44, 2004.
Huang, S.T., Ting, H.H., Chen, R.C., Chi, E.-R., Hu, C.C., and Shen, H.C., Basinal framework and tectonic evolution of offshore northern Taiwan, Petroleum Geology of Taiwan, 27, 47-72, 1992.
Hunt, C.P., Moskowitz, B.M., and Banerjee, S.K., Magnetic properties of rocks and minerals. Rock Physics and Phase Relations A Handbook of Physical Constants AGU Reference Shelf 3. 1995.
Kuo, C.Y., Tai, Y.C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R.F., and Chang, K.J., Smulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography. Engineering Geology 104, 181-189, 2009.
MacLeod, I.N., Jones, K., and Dai, T.F., 3-D analytic signal in the interpretation of the total field data at low magnetic latitudes, Expl. Geophys., 24, 679-688, 1993.
Mankinen, E.A., Grommé, C.S., Dalrymple, G.B., Lanphere, M.A. and Bailey, R.A., Paleomagnetism and K-Ar ages of volcanic rocks from Long Valley Caldera, California, J. Geophys. Res., 91, 633-652, 1986.
Mendonca, C.A., Automatic determination of the magnetization-density ratio and magnetization inclination from the joint interpretation of 2D gravity and magnetic anomalies, Geophysics 69, 938-948, 2004.
Mohan, N.L., Discussion on “Magnetic interpretation using the 3-D analytic signal (by Roest, W.R., Verhoef, J., and Pilkington, M., Geophysics, 57, 116-125, 1992), Geophysics, 58, 1214, 1993.
Murthy, K. S. R., and Mishra, D.C., Fourier transform of the general expression for the magnetic anomaly due to a long horizontal cylinder. Geophysics 45, 1091-1093, 1980.
Mushayandebvu, M. F., P. van Driel, Reid, A. B., and Fairhead, J. D., Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics 66, 814-823, 2001.
Nabighian M.N., The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37, 507-517, 1972.
Nabighian M.N., Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics, 39, 85-92, 1974.
Nabighian M.N., Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49, 957-966, 1984.
Poisson, S.D., Mémoire sur la théorie du magnétisme: Mémoires de I’Académie Royale des Sciences de I’Institut de Rrance, p. 247-348, 1826.
Quidelleur, X., Carlut, J., and Soler, V., Evolution of the geomagnetic field prior to the Matuyama-Brunhes transition: radiometric dating of a 820 ka excursion at La Palma, Geophys. J. Int., 151, 6-10, 2002.
Quidelleur, X., and Valet, J,-P., Geomagnetic changes across the last reversal recorded in lava flows from La Palma, Canary Islands, J. Geophys. Res. 101, 13755-13773, 1996.
Ravat, D., Analysis of the Euler method and its applicability in environmental magnetic investigations. Journal of Environmental and Engineering Geophysics Publications 1, 229-238, 1996.
Reid, A.B., Allsop J.M., Granser, H., Millett, A.J., and Somerton, I.W., Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55, 80-91, 1990.
Ross, H.P., and Lavin, P.M., In situ determination of the remnant magnetic vector of two-dimensional tabular bodies, Geophysics 31, 949-962, 1966.
Roest, W.R., Magnetic interpretation using the 3-D analytic signal. Geophysics 57, 116-125, 1992.
Roest, W.R., Verhoef, J., and Pilkington, M., Magnetic interpretation using the 3D analytic signal, Geophysics 57, 116-125, 1992.
Salem, A., and Ravat, D., A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data. Geophysics 68, 1952-1961, 2003.
Shaw, R.K., and Agarwal, B.N.P., A generalized concept of resultant gradient to interpret potential field maps, Geophysical Prospecting 45, 1003-1011, 1997.
Slack, H.A., Lynch, V.M., and Langan, L., The geomagnetic gradiometer, Geophysics 32, 877-892, 1967.
Smith, R.S., Thurston J.B., Dai T.-F., and MacLeod I.N., iSPITM-the improved source parameter imaging method. Geophysical Prospecting 46, 141-151, 1998.
Smith, R.S., and Salem, A., Imaging depth, and susceptibility from magnetic data: The advanced source-parameter imaging method. Geophysics 70, 31-38, 2005.
Sun, S.C., The Tertiary basin of offshore Taiwan, Proc. Second ASCOPE Conference and Exhibition, 125-135, 1982.
Thurston, J.B., and Smith, R.S., Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI(TM) method. Geophysics 62, 807-813, 1997.
Thompson, D.T., EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47, 31-37, 1982.
Werner, S., Interpretation of magnetic anomalies at sheet-like bodies, Sver. Geol. Undersok, ser. C.C. Arsbok 43, N:06, 1953.
Wessel, P., and Smith, W.H.F., New version of the generic mapping tools released. EOS Transactions, American Geophysical Union 76, 329, 1995.
Williams, S.E., Fairhead, J.D., and Flanagan, G.., Comparison of grid Euler deconvolution with and without 2D constraints using a realistic 3D magnetic basement model. Geophysics 70, 13-21, 2005.
Wilson, G.D.V., The use of the Poisson relationship for separating the anomalies due to neighboring bodies, and for recongnizing inhomogeneities and structural deformation, Bull. de Geofig. Teor. ed Apl., V. 12, p.158-182, 1970.
Yeh, Y.-C., and Hsu, S.-K., Crustal structures of the northernmost South China Sea: Seismic reflection and gravity modeling. Marine Geophysical Researches 25, 45-61, 2004.
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡