博碩士論文 970202003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.17.203.68
姓名 賴欣呈(Hsin-Cheng Lai)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 線性調頻連續波式合成孔徑雷達研製
(Design of a LFM-CW SAR)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ 全球衛星定位系統(GPS)接收器RF module設計與製作★ 全球衛星定位系統(GPS)接收器 基頻電路與天線之設計製作
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 微波散射理論於地表散射之研究
★ 一個新穎的方法來實現高光譜遙測影像分類★ 5.3GHz 昇頻器與降頻器設計與製作
★ 5.3GHz室內電波傳播特性量測與分析★ 地面遙測影像雷達及數位信號處理之設計
★ 5.3GHz射頻放大器模組之設計與製作★ 5.3GHz無線網路收發機之基頻電路設計與製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因為合成孔徑雷達是主動式的微波感測器,在地球資源探勘、全球災害防制、環境變遷偵測等方面的應用上,具有較不被天候影響的特性,所以合成孔徑雷達在一些立即性的觀測上佔有重要的地位。然而傳統的合成孔徑雷達系統是以發射線性調頻脈衝波實現,此類的系統設計必須使用一組大功率輸出模組製造脈衝波,將不利於輕型載具攜帶。線性調頻連續波式合成孔徑雷達,可用較為輕巧的架構,低廉的成本來實現高品質的合成孔徑雷達影像。
本篇論文將依序探討合成孔徑雷達的運作原理,將傳統的脈衝式雷達系統去除脈衝波成分,以線性調頻連續波的方式發射訊號,進而推導出新式雷達架構的合成孔徑成像演算法,為了驗證出這一連串的推論,我們使用儀表系統結合微波電路和電腦設計出一個線性調頻連續波式的雷達系統,也完成了測試。在測試中將以訊號產生器產生線性調頻源經由外部的微波電路發射,接著將接收訊號做解調處理,再用筆記型電腦連結頻譜分析儀擷取紀錄回波基頻信號,將這樣的一組資料代入我們的合成孔徑演算中合成出影像。最後我們將對測試場地做地物調查,用以驗證影像上的正確性。
摘要(英) Synthetic aperture radars (SAR) is an active microwave sensor widely used in earth resources exploration, global hazards detection, environmental change detection and other applications due to its all weather operation capability. Linear frequency modulated pulses are used as transmitted signal by conventional SAR. However, the pulse SAR systems are not suitable to be carried by light platforms, because they must use big power generator to produce necessary high power pulses. Linear frequency modulated continuous wave (LFM-CW), on the other hand, is able to achieve high performance with smaller structures and lower cost.
This thesis focuses on the design and test of a LFM-CW SAR, followed by de-signing a novel image focusing algorithm for it. In order to verify the system archi-tecture, well-controlled instruments, RF circuits and computer are utilized throughout the design and construction of the system. In the test, a signal generator is used to generate chirp source fed to the RF circuit including antenna for transmitting. The re-ceived signal is then demodulated to baseband and stored for further SAR processing. The analysis of the image quality is performed through a series of field tests. It is demonstrated that the system is able to achieve the required specifications.
關鍵字(中) ★ 雷達
★ 合成孔徑雷達
★ 鳥鳴訊號
★ 線性調頻
關鍵字(英) ★ chirp signal
★ radar
★ SAR
★ Linear modulated signal
論文目次 ABSTRACT (Chinese) ………………………………………………i
ABSTRACT (English) ………………………………………………ii
TABLE OF CONTENTS..……………………………………………iii
LIST OF FIGURES..…………………………………………………vi
LIST OF TABLES..…………………………………………………x
CHAPTER
1. Introduction………………………………………………………1
1.1 Background………………………………………………………1
1.2 Objectives…………………………………………………………3
1.3 Thesis Organization……………………………………………3
2. LFM-CW SAR Principle……………………………………………4
2.1 Radar Equation……………………………………………………4
2.2 Observation Geometry……………………………………………6
2.3 Spatial Resolution…………………………………………………7
2.3.1 Range Resolution……………………………………………7
2.3.2 Azimuth Resolution…………………………………………9
2.4 Signal Processing of LFM-CW Radar……………………………10
2.4.1 Analysis of radar signal……………………………………11
2.4.2 Range Compression…………………………………………13
2.4.3 Phase Detection……………………………………………15
2.4.4 Range Cell Migration Correction…………………………18
2.4.5 Azimuth Compression………………………………………21
2.5 Simulation Result………………………………………………24
3. The Design of LFM-CW SAR………………………………………26
3.1 Standard Design Procedure………………………………………26
3.2 System Configuration…………………………………………….27
3.3 Simulation of RF Circuit………………………………………28
3.4 Hardware Realization……………………………………………31
3.4.1 Instruments…………………………………………………31
3.4.2 LFM-CW SAR System………………………………………41
4. Experimental Tests and Discussions……...………………………45
4.1 Noise Level of Environment……………………………………45
4.2 System Test………………………………………………………46
4.2.1 Ranging a Point Target………………………………………46
4.2.2 Phase Detector Test…………………………………………48
4.2.3 Reconstructing Signal………………………………………52
4.3 2D Imaging………………………………………………………53
4.4 A K band Ground LFM-CW SAR System………………………60
5. Conclusions and Outlooks
5.1 Conclusions………………………………………………………71
5.2 Outlooks…………………………………………………………71
References………………………………………………………………73
參考文獻 [1] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing Active and Passive, vol. I, Artech House, 1981.
[2] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing Active and Passive, vol. II, Artech House, 1986.
[3] M. L. Skolnik, Introduction to Radar System, McGraw-Hill Inc, New York, 1980.
[4] P. Z. Peebles, Radar Principle, John Wiley & Sons, New York, 1998.
[5] I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation, Artech House, Norwood, MA, 2005.
[6] A. G. Stove, “Linear FM-CW Radar Techniques”, IEE Proc. Part F Radar Signal Process., vol. 139, no. 5, pp. 343–350, Oct. 1992.
[7] D. E. Barrick, “FM-CW Radar Signals and Digital Processing”, in National Ocea-nic and Atmospheric Administration, Tech. Rep. AD-774-829, July 1973.
[8] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar. Boston, Artech House Inc., 1995.
[9] D. G. Thompson, “Innovative Radar Interferometry”, PhD thesis, Brigham Young University, 2001.
[10] R. L. Smith, “Micro Synthetic Aperture Radar Using FM/CW Technology”, Master’s thesis, Brigham Young University, 2002.
[11] M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algo-rithms, John Wiley & Sons, Inc., New York, NY, 1999.
[12] R. R. Goldberg, “Fourier transforms”, Cambrige university press, Cambridge.
[13] S. L. Hahn, Hilbert transforms in signal processing, Artech House, Inc., Boston, 1996.
[14] J. G. Proakis, S. Masoud, Communication systems engineering, Prentice-Hall, Inc., New Jersey, 1994.
[15] E. B.Saff, Snider A. D., Complex analysis for mathematics, science and engi-neering, Prentice-Hall, Inc., New York, 1976.
[16] P.A. Rosen, S. Hensley, K. Wheeler, G. Sadowy, T. Miller, S. Shaffer, R. Muel-lerschoen, C. Jones, H. Zebker, S. Madsen, “UAVSAR: A New NASA Airborne SAR System for Science and Technology Research”, 2006 IEEE Conference on Radar, pp. 24-27, April 2006.
[17] E.C. Zaugg, D.L. Hudson, D.G. Long, “The BYU_SAR: A Small, Student-Built SAR for UAV Operation”, Proc. Int. Geosci. Rem. Sen. Symp., Denver Colorado, pp.411-414, Aug. 2006.
[18] J. J. M. de Wit, A. Meta, and P. Hoogeboom, “Modified range-Doppler processing for FM-CW synthetic aperture radar”, IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 83–87, Jan. 2006.
[19] R. S. Simon and A. Z. Alejandro, Antennas and Propagation for Wireless Com-munication Systems, second edition, John Wiley & Sons, New York, 2007.
[20] A. B. Constantine, Antenna Theory, third edition, John Wiley & Sons, New York, 2005.
[21] M. P. David, Microwave Engineering, third edition, John Wiley & Sons, New York, 2005.
[22] F. W. Joseph, High Frequency Techniques - An Introduction to RF and Micro-wave, John Wiley & Sons, New York, 2004.
[23] A. M. Stephen, Microwave Mixers, Artech House, Inc., Boston, 1985.
[24] T. Moriyama, Y. Yamaguchi, and H. Yamada, “Three-dimensional fully polari-metric imaging in snowpack by a synthetic aperture FM-CW radar”, IEICE Trans. Commun., vol. E83-B, no. 9, pp. 1963–1968, Sep. 2000.
[25] D. G. Thompson, D. V. Arnold, D. G. Long, G. F. Miner, and T.W. Karlinsey. “YSAR, A compact, low-cost synthetic aperture radar”, In Proceedings of the 1996 International Geoscience and Remote Sensing Symposium, pages 1892–1894, Lincoln, Nebraska, May 1996.
[26] H. R. Raemer, Radar Systems Principles, CRC Press, 1996.
[27] G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar, Norwood, MA: Artech House, 1995.
[28] S. S. Piper, “Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep”, In Record of the IEEE 95 International Radar Conference, IEEE, 1995, pp. 563~567.
[29] J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, New York: Wiley, 1991.
[30] R. K. Raney, H. Runge, R. Bamler, I. Cumming, and F. Wong, “Precision SAR processing using chirp scaling”, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 786–799, Jul. 1994.
指導教授 陳錕山(Kun-Shan Chen) 審核日期 2010-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明