博碩士論文 972201011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:35.153.135.60
姓名 李崇銘(Chong-Ming Li)  查詢紙本館藏   畢業系所 數學系
論文名稱 非靜態反應-對流-擴散方程的高階緊緻有限差分解法
(High-order compact finite difference schemes for 1-D unsteady reaction-convection-diffusion problems)
相關論文
★ 遲滯型細胞神經網路似駝峰行進波之研究★ 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays★ 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算
★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究★ 非線性耦合動力網路的同步現象分析
★ 邊界層和內部層問題的穩定化有限元素法★ 數種不連續有限元素法求解對流佔優問題之數值研究
★ 某個流固耦合問題的有限元素法數值模擬★ 高階投影法求解那維爾-史托克方程組
★ 二維非線性淺水波方程的Lax-Wendroff差分數值解★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects
★ On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems★ 生成對抗網路在影像填補的應用
★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們提出兩種解決一維度上非靜態反應-對流-擴散方程的高階緊緻有限差分法。對於空間的離散,第一種方法使用四階Spotz緊緻差分格式,而第二種方法則使用四階的指數型緊緻差分格式,至於時間變數之離散,兩者都使用Pade近似法。首先,我們先推導具來源項靜態方程的兩種四階緊緻差分法,接著將推導出的緊緻差分法應用到來源項為零的非靜態方程上,經此程序可以取得一個半離散形式,此半離散形式為一個大型的常微分方程式之初始值問題。最後,我們利用Pade近似法求取該初始值問題的數值近似解。在某些條件的假設之下,我們證明了這兩種方法都是無條件穩定。論文最後所提供的數值例子說明了新提出之緊緻差分方法是有效的,由這些數值結果,我們發現當網格佩克萊常數比較小時,這兩種差分方法對於空間以及時間變數都可達四階的精確度。然而,當網格佩克萊常數漸漸增大時,會使這兩種方法的數值解精確度惡化,而且在此情況下,第二個方法明顯比第一個方法來得精確。
摘要(英) In this thesis, we propose two high-order compact finite difference schemes for solving 1-D unsteady reaction-convection-diffusion problems. For the spatial discretization, the first scheme employs the fourth-order Spotz compact difference formula while the second scheme uses the fourth-order exponential compact difference formula. For discretizing the temporal variable, both schemes utilize the Pade approximation. First, we derive the spatially high-order compact difference schemes for the corresponding steady-state equation with a source term. We then apply the resulting compact difference schemes to the unsteady equation without source terms to obtain the semi-discrete formulation, which is an initial-value problem of a large system of ordinary differential equations. Finally, we apply the Pade approximation to compute the numerical solution of the initial-value problem. Under some assumptions, we prove that both schemes are unconditionally stable. Numerical examples are given to illustrate the effectiveness of the newly proposed compact difference schemes. From the numerical results, we find that for small mesh-Peclet numbers, both schemes achieve fourth-order accuracy in temporal and spatial variables. However, the accuracy of both schemes is deteriorated when the mesh-Peclet number is getting large, and in this case, the second scheme is apparently more accurate than the first scheme.
關鍵字(中) ★ 有限差分法
★ 反應-對流-擴散方程
★ 高階指數型緊緻差分法
★ 高階緊緻差分法
關鍵字(英) ★ high-order exponential compact difference scheme
★ high-order compact difference scheme
★ finite difference scheme
★ reaction-convection-diffusion equation
論文目次 Abstract ……………………………………………………………………………… 1
1. Introduction ……………………………………………………………………… 2
2. The high-order Spotz compact difference scheme ……………………………… 4
3. The high-order exponential compact difference scheme …………………………10
4. Numerical experiments ………………………………………………………… 19
5. Summary and conclusions……………………………………………………… 25
References ………………………………………………………………………… 26
參考文獻 [1] H. Ding and Y. Zhang, A new difference scheme with high accuracy and absolute stability for
solving convection-diffusion equations, Journal of Computational and Applied Mathematics,
230 (2009), pp. 600-606.
[2] P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A new high-accuracy compact finite difference
scheme for reaction-convection-diffusion problems with a small diffusivity, preprint, 2011.
[3] S. Karaa and J. Zhang, High order ADI method for solving unsteady convection-diffusion
problems, Journal of Computational Physics, 198 (2004), pp. 1-9.
[4] S. Karaa, A hybrid Pade ADI scheme of higher-order for convection-diffusion problems,
International Journal for Numerical Methods in Fluids, 64 (2010), pp. 532-548.
[5] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall,
London, UK, 1996.
[6] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differ-
ential Equations, Springer, New York, 1996.
[7] Z. F. Tian and S. Q. Dai, High-order compact exponential finite difference methods for
convection-diffusion type problems, Journal of Computational Physics, 220 (2007), pp. 952-
974.
[8] Z. F. Tian and Y. B. Ge, A fourth-order compact ADI method for solving two-dimensional
unsteady convection-diffusion problems, Journal of Computational and Applied Mathemat-
ics, 198 (2007), pp. 268-286.
[9] Z. F. Tian and P. X. Yu, A high-order exponential scheme for solving 1D unsteady convection-
diffusion equations, Journal of Computational and Applied Mathematics, 235 (2011), pp.
2477-2491.
[10] A. A. Salama and H. Z. Zidan, Fourth-order schemes of exponential type for singularly
perturbed parabolic partial differential equations, Rocky Mountain Journal of Mathematics,
36 (2006), pp. 1049-1068.
[11] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods,
Thrid Edition, Oxford University Press, Oxford, 1985.
[12] W. F. Spotz, High-Order Compact Finite Difference Schemes for Computational Mechanics,
Ph.D. Dissertation, the University of Texas at Austin, December 1995.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2011-4-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明