博碩士論文 972201016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.204.173.45
姓名 沈廉智(Lien-Chih Shen)  查詢紙本館藏   畢業系所 數學系
論文名稱 Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems
(Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization
★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們將有系統的調查兩種用於解決二次特徵值問題(QEPs)的eigenpackage, 包含:the Scalable Library for Eigenvalue Problem Computations(SLEPc)與Parallel
Jacobi-Davidson Package(PJDPack)這兩個建構在Portable, Extensible Toolkit for Scientific Computation(PETSc)的Package. 對於這兩個eigenpackage最主要的差別在於SLEPc是使用linearization approach並且有多種不同的eigensolver去解決generalized後的特徵值問題. 而另一方面, PJDPack只有使用PJD演算法並且對於二次特徵值問題是使用直接解法. 為了能夠進行接下來的討論, 我們使用一個Matlab-based的工具, a collection of nonlinear eigenvalue problem (NLEVP)來製作大量具有差異性值的矩陣來做一些數值實驗並且用robustness, accuracy和efficiency來評估效率問題.
摘要(英) In this thesis, we systematically investigate the numerical performance of two eigenpackages for solving quadratic eigenvalue problems (QEPs), namely Scalable Library for Eigenvalue Problem Computations (SLEPc) and Parallel Jacobi-Davidson Package (PJDPack) are both in common built-on-top of Portable, Extensible, Toolkits for Scientific computation (PETSc) [3]. The major differeces between these two eigenpackages is that SLEPc adopts the linearization approach and provides several linear eigensolvers to solve the resulting companion GEPs. On the other hand, the PJD algorithm is the only kernel solver of PJDPack that targets directly the QEP. To draw the concrete conclusions, we generate a large number of test cases using a Matlab-based toolbox, a collection of nonlinear eigenvalue problem (NLEVP) with a diversity of matrix properties and conduct intense numerical experiments to evaluate the performance in terms of robustness, accuracy and efficiency.
關鍵字(中) ★ 二次特徵值問題
★ SLEPc
★ PETSc
★ PJDPack
關鍵字(英) ★ Quadratic Eigenvalue Problems
★ Quadratic PDE Problems
★ PJDPack
★ SLEPc
★ Performance Comparison
★ PETSc
論文目次 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Linearization approach in SLEPc . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Exterior spectrum case . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Interior spectrum case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Shift-and-invert-first-then-linearization . . . . . . . . . . . . . . 4
2.2.2 Linearization-first-then-shift-and-invert . . . . . . . . . . . . . . 6
2.3 Scaling technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Iterative solution of comparison GEP . . . . . . . . . . . . . . . . . . . . 8
2.5 The Eigenpackage of SLEPc . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.1 Defining the Problem . . . . . . . . . . . . . . . . . . . . . . . . 11
3 JD algorithm in PJDPack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Test cases and environment . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 The Shift-and-invert SLEPc QEP solver . . . . . . . . . . . . . . 23
4.2.2 Correction equation of PJDPack . . . . . . . . . . . . . . . . . . 24
4.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
The spectrum of all test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 SLEPc QEP solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 PJDPack QEP solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 NLEVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 The spectrum of all test cases . . . . . . . . . . . . . . . . . . . . . . . . 43
參考文獻 [1] D. Afolabi. Linearization of the quadratic eigenvalue problem. Comput. Struct., 26(6):1039–1040, 1987.
[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H.A. van der Vorst. Templates for the solution of algebraic eigenvalue problems: A practical guide. SIAM, 2000.
[3] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, . C. McInnes, B. F. Smith, and H. Zhang. PETSc webpage, 2010. http://www.mcs.anl.gov/petsc.
[4] J.G.L. Booten, H.A. van der Vorst, P.M. Meijer, and H.J.J. te Riele. A Preconditioned Jacobi-Davidson Method for Solving Large Generalized Eigenvalue Problems. Centrum voor Wiskunde en Informatica, 1994.
[5] L. Boulton and M. Levitin. On approximation of the eigenvalues of perturbed periodic schr‥odinger operators. J. Phys. Math Gen., 40:9319, 2007.
[6] F. Chaitin-Chatelin and MB Van Gijzen. Analysis of parameterized quadratic eigenvalue problems in computational acoustics with homotopic deviation theory. Numer. Lin. Algebra Appl., 13(6):487–512, 2006.
[7] H.Y. Fan,W.W. Lin, and P.V. Dooren. Normwise scaling of second order polynomial matrices. SIAM J. Matrix Anal. Appl., 26(1):252–256, 2005.
[8] A. Feriani, F. Perotti, and V. Simoncini. Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Meth. Appl. Mech. Eng., 190(13):1719–1739, 2000.
[9] D.R. Fokkema, G.L.G. Sleijpen, and H.A. van der Vorst. Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput.,
20:94–125, 1998.
[10] A. Gotts. Report regarding model reduction, model compaction research project, university of nottingham. Unpublished manuscript, 2005.
[11] J.-S. Guo, W.-W. Lin, and C.-S. Wang. Nonequivalence deflation for the solution of matrix latent value problems. Linear Algebra Appl., 231:15–45, 1995.
[12] I. Harari, K. Grosh, TJR Hughes, M. Malhotra, PM Pinsky, JR Stewart, and LL Thompson. Recent developments in finite element methods for structural acoustics. Archives of Computational Methods in Engineering, 3(2-3):131–309, 1996.
[13] V. Hernandez, J.E. Roman, A. Tomas, and V. Vidal. SLEPc webpage, 2010. http://www.grycap.upv.es/slepc.
[14] V. Hernandez, JE Roman, A. Tomas, and V. Vidal. Krylov-Schur methods in SLEPc, 2007.
[15] N.J. Higham, D.S. Mackey, F. Tisseur, and S.D. Garvey. Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems. Int. J. Numer. Meth. Eng., 73(3):344–360, 2008.
[16] T.-M. Huang, F.-N. Hwang, S.-H. Lai, W. Wang, and Z.-H. Wei. A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems. Comput. & Fluids, 2011.
[17] F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J. Comput. Phys., 229:2932–2947, 2010.
[18] T.R. Kowalski. Extracting a few eigenpairs of symmetric indefinate matrix pencils. PhD thesis, University of Kentucky, 2000.
[19] M. Nool and A. van der Ploeg. A parallel Jacobi-Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics. SIAM J. Sci. Comput., 22:95–112, 2000.
[20] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17:401–425, 1996.
[21] G.L.G. Sleijpen and H.A. van der Vorst. The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton schemes. IMACS Ann. Comput. Appl. Math, 3:377–389, 1996.
[22] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev., 42(2):267–293, 2000.
[23] T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, F. Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. 2010.
[24] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl., 309:339–361, 2000.
[25] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43:235–286, 2001.
[26] H. Voss. A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. & Structures, 85(17-18):1284–1292, 2007.
[27] W.-W. Lin J.-L. Liu W. Wang, T.-M. Hwang. Numerical methods for semiconductor heterostructures with band nonparabolicity. J. Comput. Phys., 190:141–158, 2003.
[28] S. Wei and I. Kao. Vibration analysis of wire and frequency response in the modern wiresaw manufacturing process. J. Sound Vibr., 231:1383–1395, 2000.
[29] Z.-H. Wei, F.-N. Hwang, T.-M. Huang, and W. Wang. A parallel scalable PETSc-based Jacobi-Davidson polynomial eigensolver with application in quantum dot simulation. Lect. Notes Comput Sci Eng, in press.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2012-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明