博碩士論文 972201020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.227.233.6
姓名 王裕惇(Yu-Dun Wang)  查詢紙本館藏   畢業系所 數學系
論文名稱 氣流的非黏性駐波通過不連續管子之探究
(Inviscid stationary waves of gas flow through discontinuous nozzles)
相關論文
★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws★ 影像模糊方法在蝴蝶辨識神經網路中之應用
★ 單一非線性平衡律黎曼問題廣義解的存在性★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性
★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解★ 一些退化擬線性波動方程的解的性質.
★ 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的★ 水文地質學的平衡模型之擴散對流反應方程
★ 非線性守恆律的擾動Riemann 問題的古典解★ BBM與KdV方程初始邊界問題解的週期性
★ 共振守恆律的擾動黎曼問題的古典解★ 可壓縮流中微黏性尤拉方程激波解的行為
★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性★ 有關非線性平衡定律之柯西問題的廣域弱解
★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理★ 二階非線性守恆律的整體經典解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文我們將研究一維有黏性、等熵且可壓縮的流體通過各式各樣的不連續管子的非黏性穩定狀態,透過使用geometric singular perturbation 的技巧來建立駐波(stationary wave)的存在性。我們研究包括supersonic、subsonic、transonic 的駐波都是不連續的,並且將每種情況中的非黏性駐波分類討論。特別是,我們將探討光滑的管子和不連續的管子中的駐波的差別。
摘要(英) In this work we study inviscid steady-states of one-dimensional viscous isentropic compressible flows through various discontinuous nozzles. We establish the existence of stationary waves by using geometric singular pertur-bation technique. We conclude that all stationary waves including supersonic, subsonic and transonic, are discontinuous. Also, we classify all inviscid stationary waves in every situation.In particular, we discuss the difference of inviscid stationary waves between smooth nozzle and discontinuous nozzle.
關鍵字(中) ★ 水平到擴張之不連續管子
★ 幾何奇異擾動
★ 氣流
★ 穩定狀態.
關鍵字(英) ★ geometric singular perturbation
★ Gas flow
★ transonic steady-state.
★ horizontal- expanding discontinuous nozzle
論文目次 Contents
Abstract (in English) ...i
Contents...ii
1 Introduction...1
2 Standing waves and shocks of inviscid flow in mollified horizontal-expanding duct...3
2.1 Standing waves...4
2.2 Standing shocks...6
3 Inviscid steady-state in mollified horizontal-expanding duct...7
3.1 A dynamical system formulation...8
3.2 Slow manifold, limiting slow and fast dynamics...9
3.2.1 First representation of Z_0 and limiting slow dynamics...10
3.2.2 second representation of Z_0 and limiting fast dynamics...11
3.3 Jump curves of limiting slow orbits and their transversality property...13
3.4 Classification of inviscid steady-states in mollified H-E duct...18
4 Inviscid steady-state in discontinuous horizontal- expanding duct...22
4.1 Properties of inviscid steady-state with discontinuous H-E duct...23
4.2 Classification of inviscid steady-states with discontinuous H-E duct...26
5 Other Case: Contracting-horizontal and Contracting-expanding discontinuous nozzle...30
5.1 Contracting-horizontal uniform nozzle...30
5.2 Contracting-horizontal discontinuous nozzle...39
5.3 Contracting-expanding discontinuous nozzle...45
參考文獻 References
[1] John M. Hong, Cheng-Hsiung Hsu and Weishi Liu, Inviscid and viscous stationary waves of gas flow through contracting-expanding nozzles , J. Diff. Eqns. 248 (2010), pp. 50-76.
[2] S. R. Chakravarthy and S. Osher, Numerical experiments with the Osher upwind scheme for the Euler equations, AIAA J. 21 (1983), no. 9, pp. 1241-1248.
[3] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2005.[4] P. Embid, J. Goodman, and A. Majda, Multiple steady states for 1-D transonic flow, SIAM J. Sci. Stat. Comput. 5(1984), no. 1, pp. 21-41.
[5] N. Fenichel, Persistence and smoothness of invariant manifolds and flows, Indiana Univ. Math. J. 21 (1971/1972), pp. 193-226.
[6] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqns. 31 (1979), no. 1, pp. 53-98.
[7] J. M. Hong, C.-H. Hsu and W. Liu, Viscous standing asymptotic states of isentropic compressible flows through a nozzle, Arch. Ration. Mech. Anal. 196 (2010), no. 2, pp. 575-597.
[8] J. M. Hong, C.-H. Hsu and W.Liu, Sub-to-super transonic steady states and their linear stabilities for gas flows, submitted.
[9] M. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, New York, 1976.
[10] S.-B. Hsu, and T.-P. Liu, Nonlinear singular Sturm-Liouville problems and an application to transonic flow through a nozzle, Comm. Pure Appl. Math. 43 (1990), no. 1, pp. 31-61.
[11] E. Isaacson and B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995), no. 3, pp. 625-640.
[12] C.K.R.T. Jones, Geometric singular perturbation theory, Dynamical Systems (Montecatini Terme, 1994). Lecture Notes in Math. 1609, Springer-Verlag, Berlin, 1995, pp. 44-118.
[13] H. W. Liepmann and A. Roshlo, Elementary of Gas Dynamics, GALCIT Aero-nautical Series, New York: Wiely, 1957.
[14] X.-B. Lin and S. Schecter, Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws, SIAM J. Math. Anal. 35 (2004), no. 4, pp. 884-921.
[15] T.-P. Liu, Quasilinear hyperbolic system, Comm. Math. Phys. 68 (1979), no. 2, pp. 141-172.
[16] T. P. Liu Transonic gas flow in a duct of varying area, Arch. Ration. Mech. Anal. 80 (1982), no. 1, pp. 1-18.
[17] W. Liu, Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws, Discrete Contin. Dyn. Syst. 10 (2004), no. 4, pp. 871-884.
[18] S. Schecter, Undercompressive shock waves and the Dafermos regularization, Nonlinearity 15 (2002), no. 4, pp. 1361-1377.
[19] S. Schecter, Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory, J. Dynam. Differential Equations 18 (2006), no. 1, pp. 53-101.
[20] S. Schecter and P. Szmolyan, Composite waves in the Dafermos regularization, J. Dynam. Differential Equations 16 (2004), no. 3, pp. 847-867.
[21] G. R. Shubin, A. B. Stephens and H. Glaz, Steady shock tracking and Nowton’s method applied to one-dimensional duct flow, J. Comput. Phys. 39 (1980), no. 2, pp. 364-374.
[22] D. Serre, Systems of conservation laws. 1. Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge, 1999.
[23] D. Serre, Systems of conservation laws. 2. Geometric structures, oscillations, and initial-boundary value problems, Translated form the 1996 French original by I.N. Sneddon. Cambridge University Press, Cambridge, 2000.
[24] D. H. Smith, Non-uniqueness and multi-shock solutions for transonic flows, IMA J. Appl. Math. 71 (2006), no. 1, pp. 120-132.
[25] P. Szmolyan and M. Wechselberger, Canards in R3, J. Diff. Eqns. 177 (2001), no. 2, pp. 419-453.
[26] B. Whitham Linear and nonlinear waves, New York, John Wiley, 1974.
指導教授 洪盟凱(John M. Hong) 審核日期 2011-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明