博碩士論文 972202022 詳細資訊


姓名 蘇彥碩(Yen-Shuo Su)  查詢紙本館藏   畢業系所 物理學系
論文名稱 微粒電漿液體的淬火行為
(Quenching dusty plasma liquids)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 快速冷卻可使液體在低於熔點溫度下維持其不規則結構,此為一典型將液體轉換至玻璃態之方法。玻璃為一在典型觀察尺度下具備固體性質(彈性反應),卻在極端長的觀察時間下顯現出液體行為(塑性流動)的型態。為何快速冷卻可防止物質結晶化和為何玻璃在不同觀測時間尺度下能顯露出如此不同的性質為一尚未完全解決的議題。研究在微觀液體淬火下之暫態過程為一深入理解玻璃態形成之物理起源的方法。然而由於原子的特徵時空間尺度過小且過快,直接觀察物質微觀淬火過程仍然是實驗上的一大挑戰。
微粒電漿液體是藉由帶負電之微米尺度粉塵微粒懸浮在低壓弱游離氣體下所構成,其時空間特徵尺度使其可類比真實液體並藉此在動態尺度下研究其微運動。空間上,藉由背景熱擾動,微粒可顯現出不同的動態行為,侷限運動及跳躍運動。近來研究指出侷限運動及跳躍運動的異質性為一接近玻璃態時之普遍性法則。在微粒電漿系統中,藉由調動射頻游離能量能瞬間降低背景熱擾動,稱作淬火。在這篇論文中,我們研究微粒電漿液體在淬火後的暫態反應。淬火後,雖然熱擾動瞬間降低,不規則結構仍能保有形變位能,藉由釋放形變位能所引發的跳躍運動 可形成小尺度之規則結構。小尺度規則結構可逐漸合併成大尺度的規則結構並保有較長的空間相關性和結構重整時間,亦增加動態異質性。藉由相鄰規則結構之間的錯位可防止系統結晶化並造成規則結構邊界上的不穩定現象亦被探討。
摘要(英) Fast cooling can make liquids maintain its disordered structure even below the melting temperature. It is a way to turn liquids into the glassy state. In general, the glass is the system which has solid-like behaviors (elastic response) for our typical observation time scale and liquid-like behaviors (plastic flow) for extremely long observation time. Why the fast cooling rate can prevent material crystallizing, and why the glass can exhibit so distinct properties at different observation time scales are old puzzles and an open issue. In order to answer these questions, studying the transient process of the quenched liquid microscopically may be a way to deeply understand the origin of glassy systems. However to directly observe this quenching process microscopically is still a challenge due to the spatiotemporal scale (too small and too fast).
The dusty plasma liquid is formed by the negatively charged micro-meter size dust particles suspended in low pressure gaseous discharge. The spatiotemporal characteristic scale makes it possible to mimic the real liquid and investigate the micro-motion of the liquid at kinetic level. Spatially, the particles could exhibit distinct dynamics, caged and hopping motion, due to the background excitation. Recently, the increase of the degree of heterogeneity between caged and hopping motion is considered as a universal law near the glass transition. In the dusty plasma system, the rf discharge power can be tuned to decrease background temperature instantaneously, namely quenching. In this work the transient process after quenching is presented. Although the thermal agitation decreases suddenly, the local strain cannot be released at the same time. It can induce the hopping motion associated with structural arrangement which in term to release local strain energy and forming more ordered structure. The small size ordered domains gradually merge into larger ordered domain with longer spatial correlation and slower structural reorganization. The forming of larger ordered domain also increase the dynamic heterogeneity. However the dislocations between different ordered domains prevent the crystallization and make boundary of ordered domain unstable. The character of order parameter fluctuation due to instability of local domain boundary is presented and discussed.
關鍵字(中) ★ 液體
★ 淬火
★ 微粒電漿
★ 玻璃態
關鍵字(英) ★ dusty plasma liquid
★ quench
★ glass
論文目次 1 Introduction 1
2 Background and theory 5
2.1 Macroscopic view of the supercooled liquid and glass. . . . . . 5
2.2 Liquid at the discrete level . . . . . . . . . . . . . . . . . . . . 6
2.2.1 The micro motion at the discrete level . . . . . . . . . 7
2.2.2 The mean square displacement . . . . . . . . . . . . . 7
2.2.3 Non-Gaussian parameter . . . . . . . . . . . . . . . . . 11
2.2.4 Self-intermediate scattering function . . . . . . . . . . 12
2.3 Dusty plasma system . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Radio frequency glow discharges and dusty plasmas . . 12
2.3.2 Previous studies on quasi-2D strongly coupled dusty
plasma liquids . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 The micro structure, topological defects, bond orientational
order and spatiotemporal correlation functions . . . . . . . . 15
2.4.1 Topological defects . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Bond-orientational order and its spatiotemporal correlations
. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Experiment and data analysis 20
3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Joint probabilities and correlation probabilities of successive
events . . . . . . . . . . . . . . . . . . . . . . . 23
4 Result and Discussion 24
4.1 Global evolution in quenched quasi-2D dusty plasma liquid . . 25
4.1.1 Trajectory, bond orientational order and local vorticity 25
4.1.2 Evolution of the bond orientational order and the kinetic
energy . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Evolution of micro-motion in liquid quenching . . . . . . . . . 30
4.2.1 Mean square displacement . . . . . . . . . . . . . . . . 30
4.2.2 Probabilities distribution of displacement . . . . . . . . 32
4.2.3 Collective motion . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Structural relaxation time . . . . . . . . . . . . . . . . 35
4.3 The relation between structure and motion . . . . . . . . . . . 38
4.3.1 Correlation probability between structure and dynamics 39
4.3.2 Spatiotemporal correlation of bond orientational order 39
5 Conclusion 45
參考文獻 [1] T. E. Faber, Fuild Dynamics for Physicists, (Cambridge University Press
1995).
[2] E.Wigner, Trans. Faraday Soc. 34, 678 (1939).
[3] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (ACADEMIC
PRESS LIMITED 1986).
[4] Eric R. Weeks, et al, Science. 287, 627 (2000).
[5] K. Watanabe and H. Tanaka, Phys. Rev. Lett. 100, 158002 (2008).
[6] Y.J. Lai and Lin I, Phys. Rev. Lett. 89, 155002 (2002).
[7] P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett. 99, 060604
(2007).
[8] Y. Gao and M. L. Kilfoil, Phys. Rev. Lett. 99, 078301 (2007).
[9] M. D. Ediger, C. A. Angell and Sidney R. Nagel, J. Phys. Chem. 100,
13200 (1996).
[10] P. G. Debenedetti and F. H. Stillinger, Nature. 410, 259 (2001).
[11] R. Casalini and C.M. Roland, Phys. Rev. Lett. 102, 035701 (2009).
[12] N. Greinert, T. Wood, and P. Bartlett, Phys. Rev. Lett. 97, 265702
(2006).
[13] L. Ramos and L. Cipelletti, Phys. Rev. Lett. 87, 245503 (2001).
[14] J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994).
[15] H. Thomas et al:, Phys. Rev. Lett. 73, 652 (1994).
[16] L. W. Teng, P. S. Tu, Phys. Rev. Lett. 90, 245004 (2003).
[17] Lin I, W. T. Juan, and C. H. Clnang, Science 272, 1626 (1996).
[18] C. L. Chan, W.Y. Woon and L. I, Phys. Rev. Lett. 93 220602 (2004).
[19] W. Y. Woon and L. I, Phys. Rev. Lett. 92, 065003 (2004).
[20] Y. S. Hsuan, and Lin I, Phys. Rev. E. 76, 016403 (2007).
[21] C. L. Chan , Ph. D. thesis, National Central University, Republic of
China, (2008).
[22] C. L. Klix, C. P. Royall, and Hajime Tanaka (2010).
[23] Y. J. Lai, Ph. D. thesis, National Central University, Republic of China,
(2002).
[24] J. Mattsson, et al, Nature, 08457 (2009).
[25] E. D. Gado and W. Kob, Phys. Rev. Lett. 98, 028303 (2007).
[26] T. Kawasaki, T. Araki, and H. Tanaka, Phys. Rev. Lett. 99, 215701
(2007).
[27] Brain Chapman, Glow Discharge Processes (Wiley Inter-science Press
1995).
[28] J. M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).
[29] B. I. Harperin and D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
[30] D. R. Nelson, Phys. Rev. B 26, 269 (1982).
[31] A. P. Young, Phys. Rev. B 19, 1855 (1979).
[32] K. J. Strandburg, Bond-Orientational Order in Condensed Matter Systems (Springer, New York, 1992).
指導教授 伊林(Lin I) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡