博碩士論文 972202032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.17.74.227
姓名 王郁雯(Yu-wen Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Water Strider Locomotion)
相關論文
★ 庫倫作用粒子之動力學★ 帶電粒子在離子流中之交互作用
★ 肥皂膜上的能量耗散★ 紙片落下之行為研究
★ 外加場下肥皂膜的能量耗散★ 圓柱體在二維垂直肥皂膜之動力學
★ 螺旋狀物體在剪切流中的運動行為★ 二元高分子薄膜在平行電場下的相分離
★ 纖毛不對稱運動的模擬★ 肥皂膜流場中圓柱體之行為研究
★ 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論★ 彈性懸掛棍在旋轉系統下之行為
★ 膠體球在電解質溶液中的擴散泳★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析
★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function★ 剛體球在不對稱垂直震盪系統中的動力學行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水黽是一種生活在靜水流域的昆蟲,特徵體長約 1-2 cm ,體重約 10-50 mg,水黽的體重是由水的表面張力支撐,而且水黽可以用超疏水且細長的腳在水面快速移動而幾乎不會沾濕,現在的研究學者推論水黽在水面移動的機制,是藉著漩渦尾流轉移向後的動量,這個假設認為向後移動的半球漩渦攜帶著跟移動的水黽相近的動量。在我們的實驗中,我們改變水深去影響半球漩渦的形狀,不過結果顯示,水黽在不同水深移動的平均距離沒有明顯的改變,但在淺水中漩渦卻變得較小而且幾乎靜止不動,因此我們認為水黽移動的流體力學推進,並不是直接依賴漩渦的動量轉移。我們用理論計算證明,當水黽腳下的水面凹陷隨著腳划過水面時,產生的剪流提供了足夠的黏滯剪應力去推動水黽向前,而且產生的剪流深度只有 0.2 mm,這可以解釋為什麼當實驗水深下降到 0.5 mm 時,水黽的平均移動距離依舊不變。而接著這個剪流在深水中會發展成漩渦,但是在淺水中則會直接傳到底板,因此形成的漩渦很小且幾乎不動。在這個特別的生物流體例子中顯示,即使在雷諾數高達數千,黏滯力也有可能主宰水生生物的移動。
摘要(英) Abstract Water striders, Aqyarius elongatus, are insects living on the water surface like ponds, slow streams, marshes, and other quiet waters, and their body range typically 1-2 cm in length and 10-50 dynes in weight. Their weights are supported by the surface tension force and they can move over the water surface very quickly by their hydrophobic elongated legs and rarely get wet. The recent investigate inferred that the mechanism of water strider motion on water surface relies on the vortices transferring momentum backward. The assumption describes that the moving hemispherical vortices carry the momentum of walking water strider approximately. In our experiments we change the depth of water from deep to thin to influence the hemispherical vortex shape. However the results show that the average distance for one stroke of water strider doesn’t vary apparently and the vortices become smaller and almost stationary at shallow water as well as. Therefore we think the hydrodynamic propulsion of water strider locomotion does not directly rely on the momentum transfer by the vortices shed. Through theoretical calculation, we show that the shear flow during the water strider stroking on the water surface provides enough viscous shear stress to drive the water strider moving forward. Furthermore the depth of shear flow is just 0.2 mm, and that explains our results, the water striders move unrestrictedly even the water depth decreases to 0.5 mm. After water strider stroking, the shear flow develops into the vortices in deep water, however at shallow water the momentum transfer to the bottom of tank to cause the vortices small and staying behind nearly. This case shows that the viscous force dominate the locomotion of an aquatic creature even the Reynolds number is thousands.
關鍵字(中) ★ 水黽
★ 推進
★ 漩渦
★ 黏滯力
★ 剪應力
關鍵字(英) ★ water strider
★ propulsion
★ vortex
★ viscous force
★ shear stress
論文目次 1 Introduction and Background 1
2 Apparatus and Experiment 9
2.1 Preparation of Water Strider . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Influence of Water Depth for Water Strider Motion . . . . . . . . 10
2.4 The Influence of Water Depth for Vortex Development . . . . . . . . 11
2.5 Effect of Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Result 12
3.1 Average Distance and Velocity of Movement . . . . . . . . . . . . . . 12
3.2 Vortex Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Effect of Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Discussion 30
4.1 Three Possible Propulsion Forces . . . . . . . . . . . . . . . . . . . . 30
4.2 Propulsion Force for Water Strider . . . . . . . . . . . . . . . . . . . 34
5 Conclusion 39
Bibliography 41
參考文獻 [1] R. T. Schuh and J. A. Slater. True Bugs of the World (Hemiptera: Heteroptera).
Cornell University Press, Ithaca, New York. (1995)
[2] M. W. Denny. Paradox lost: answers and questions about walking on water. J.
Exp. Biol. 207, 1601–1606 (2004).
[3] I. H. Shames, Mechanics of Fluids. McGraw-Hill, New York. (1992).
[4] P.-G. de Gennes F. Brochard-Wyart and D. Qu’er’e. Capillarity and Wetting
Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New-York, 2004.
[5] J. B. Keller. Surface tension force on a partly submerged body. Phys. Fluids 10,
3009 (1998).
[6] X Gao & L Jiang. Biophysics: water-repellent legs of water striders. Nature,
432, 36 (2004).
[7] X Feng, X Gao, Z Wu, L Jiang & Q Zheng. Superior Water Repellency of
Water Strider Legs with Hierarchical Structures: Experiments and Analysis.
Langmuir23, 4892-4896 (2007)
41
[8] R. Suter, O. Rosenberg, , S. Loeb, H. Wildman, & J. H. Long. Locomotion on
the water surface: propulsive mechanisms of the fisher spider Dolomedes triton.
J. Exp. Biol. 200, 2523–2538 (1997).
[9] S. M. Sun & J. B. Keller. Capillary-gravity wave drag. Phys. Fluids 13,
2146–2151 (2001).
[10] E. Raphael & P.-G. de Gennes. Capillary gravity waves caused by a moving
disturbance: wave resistance. Phys. Rev. E 53, 3448 (1996).
[11] T. E. Faber. Fluid Dynamics for Physicist. Cambridge University Press, Cambridge,
(1995).
[12] M. W. Denny. Air and Water: The Biology and Physics of Life’s Media. Princeton
University Press, Princeton (1993).
[13] A. D. Chepelianskii, F. Chevy & E. Raphael. Capillary-Gravity Waves Generated
by a Slow Moving Object. Phys. Rev. L100, 074504 (2008)
[14] D. L. Hu, B. Chan & J. W. M. Bush. The hydrodynamics of water strider
locomotion. Nature 424, 663–666 (2003).
[15] N. V. Kokshaysky. Tracing the wake of a flying bird. Nature 279, 146–148
(1979).
[16] G. V. Lauder & E. G. Drucker. Forces, Fishes, and Fluids: Hydrodynamic
Mechanisms of Aquatic Locomotion. News Physiol. Sci.17, 235–240 (2002).
[17] J. W. M. Bush , D. L. Hu & M. Prakash. The Integument of Water-walking
Arthropods: Form and Function. Advances in Insect Physiology34, 117–192
(2007).
42
[18] S. Vogel. Life in Moving Fluids: The Physical Biology of Flow. Princeton University
Press, Princeton (1994).
[19] K. Matsuda, S. Watanabe, & T. Eiju. Real-time measurement of large liquid
surface deformation using a holographic shearing interferometer. Applied Optics
24, 4443–4447 (1985).
[20] R. W. Fox and A. T. McDonald, Introduction to Fluid Mechanics Wiley, New
York (1985).
指導教授 陳培亮(Peilong Chen) 審核日期 2010-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明