博碩士論文 972203011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.190.156.80
姓名 蘇紀禹(Chi-yu Su)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以掌性分離管柱搭配液相層析質譜儀 檢測對掌型藥物的方法開發與應用
(A novel method for separating ketoprofen and ibuprofen by α1-acid glycoprotein chiral columnwith HPLC-APCI-MS/MS )
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來藥物市場的供應和使用量節節高升,且市售藥物中超過25%是以消旋或是結構異構物的型態來販售,因此環境藥物殘留的檢測越來越受矚目。雖然這些非類固醇鎮痛解熱劑(non-steroidal anti- inflammatory drugs,簡稱NSAIDs)的作用機制已經有20幾年的研究歷史了,但尚未明白殘留於環境中是否在未來對環境將造成什麼不可預期的影響。特別是具有掌性特性的藥物,因為不同掌性異構物對生物體的生物活性與毒性皆有所不同,因此研究環境中對掌藥物的含量與比例越來越受大家關注。本研究挑選兩個常用且含有掌性特性的非類固醇陣痛解熱劑-凱妥普洛芬和異布洛芬來當作目標待測物。分離管柱選擇α1-酸性醣蛋白掌性分離管柱(α1-acid glycoprotein chiral column,簡稱AGP掌性分離管柱),搭配液相層析串聯質譜儀開發出可檢測環境不同水樣中掌性異構物比例的分析方法。在動相溶液中添加三級胺的電荷修飾劑-DMOA(N, N-dimethyloctylamine)可大幅改善掌性異構物之分離效果但會造成某程度上的基質干擾。比較三種不同遊離介面(ESI, APCI和APPI)的游離效果、基質干擾程度及偵測極限,來選擇最佳遊離介面。真實樣品則利用HLB固相萃取法萃取環境水樣中的待測物。本實驗的凱妥普洛芬之偵測極限(LOD)為100 ng/L,而添加之水樣掌性異構物回收率為50-100%,相對標準偏差皆在8以內,然而五個真實水樣中皆未偵測到凱妥普洛芬異構物的存在。雖然添加DMOA可以大幅改善待測物的滯留時間以及管柱掌性選擇性,但也會產生嚴重的基質干擾影響游離源的游離效果以及質譜偵測極限。
摘要(英) Currently, pharmaceuticals are supplied and used in abundance, their residues become major targets in environmental. More than 25% of pharma- ceuticals are market as either recemates or the mixture of diastereoisomers. Although non-steroidal anti-inflammatory drugs(NSAIDs) has been studied for over 20 years, the subsequent environmental occurrence, fate, and effects of these residues are not well understood, especially the effects of chiral residues in our environment. Chiral residues should be concerned because of their different biological and/or toxicological effects from one another. Two widely used NSAIDs, Ibuprofen and ketoprofen, were used as the model chiral compounds in our study. A method of chiral liquid chromatography-tandem mass spectro- metry(LC-MS/MS) was developed to determine the ibuprofen and ketoprofen enantiomers in various water samples. A chiral α1-acid glycoprotein (AGP) column was used to separate two enantiomers. The retention and the enantio- selectivity of the analytes can easily be regulated by addition of tertiary amine N, N-dimethyloctylamine (DMOA) to the mobile phase as a charge modifier. Moreover, various ionization techniques including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric photoionization (APPI) interfaced with chiral liquid chromatographic methods were evaluated with their ionization efficiencies, matrix effects and limitations. Water samples were extracted by HLB-solid-phase extraction. The limit of quantitation (LOQ) was 100 ng/L for ketoprofen enantiomers in 100 mL of water sample. The spiked recoveries of enantiomers ranged 50-100% while RSD was less than 8% (n=3). However, enantiomers were not detected in five selected water samples. Although DMOA can be added to improve the retention and enantioselectivity, of solute, it may bring seriously matrix effect to affect ionization efficience and detection limitation.
關鍵字(中) ★ 非類固醇鎮痛解熱劑
★ AGP掌性分離管柱
★ 液相層析質譜儀
關鍵字(英) ★ NSAIDs
★ AGP chiral column
★ HPLC-APCI-MS/MS
論文目次 第一章 前言------------------------------------------------------------------ 1
1-1-0 研究緣起------------------------------------------------------------ 1
1-2-0 研究目標------------------------------------------------------------ 4
第二章 文獻回顧------------------------------------------------------------ 6
2-1 藥物殘留------------------------------------------------------------- 6
2-1-1 藥物殘留在環境中的作用與機制-------------------------- 6
2-1-2非類固醇鎮痛解熱劑------------------------------------------ 8
2-1-3 相關研究文獻-------------------------------------------------- 9
2-20 對掌異構物之分離----------------------------------------------- 14
2-2-1對掌異構物之簡介-------------------------------------------- 14 2-2-2 掌異構物分離之重要性-------------------------------------- 16
2-2-3 掌異構物分離技術之原理----------------------------------- 17
2-2-4 α1-AGP掌性分離管柱簡介--------------------------------- 21
2-3 胺類添加劑介紹--------------------------------------------------- 25
2-4- 液相層析質譜儀-------------------------------------------------- 28
2-4-1電噴灑游離法-------------------------------------------------- 29
2-4-2大氣壓力化學游離法----------------------------------------- 30
2-4-3大氣壓力光游離法-------------------------------------------- 31
2-5 固相萃取法-------------------------------------------------------- 34
第三章 實驗方法----------------------------------------------------------- 38
3-1 實驗藥品與儀器設備----------------------------------------------------- 38
3-1-1實驗藥品-------------------------------------------------------- 38
3-1-2 儀器設備------------------------------------------------------- 39
3-20 實驗步驟---------------------------------------------------------- 40
3-2-1 標準品的製備------------------------------------------------- 40
3-2-2 HPLC動相溶液的製備--------------------------------------- 41
3-2-3 標準品的測定-------------------------------------------------- 41
3-2-4 液相層析質譜儀參數設定---------------------------------- 41
3-2-5固相萃取步驟-------------------------------------------------- 43
3-3 水樣採集----------------------------------------------------------- 44
第四章 討論與結果-------------------------------------------------------- 45
4-10 對掌異構物之分離最佳化------------------------------------ 45
4-20 不同遊離源在正負模式下之分析結果---------------------- 53
4-30 不同遊離源最佳化參數設定---------------------------------- 56
4-3-1-不同流速對APCI游離源之影響------------------------ 58
4-3-2-不同摻雜劑以及添加流速對APPI游離源之影響------ 61
4-3-3-不同參數對ESI游離源之影響----------------------------- 62
4-40 檢量線------------------------------------------------------------- 69
4-5 固相萃取-------------------------------------------------------- 72
4-6 真實水樣之分析結果-------------------------------------------- 73
第五章 結論----------------------------------------------------------------- 77
參考文獻------------------------------------------------------------------------------- 79
參考文獻  王碧蓮,利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用,碩士論文,國立中央大學化學研究所,民國94年
 林宛靜,快速分析水環境中醫療藥品殘留物之研究與探討,碩士論文,國立中央大學化學研究所,民國92年。
 高雅慧,以ATC分類探討全民健康保險 藥品之利用與分配,國立成功大學醫學院 臨床藥學研究所,民國89年。
 Abushoffa, A. M.; Fillet, M.; Hubert, P.; Crommen, J., Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual cyclodextrin systems, J. Chromatogr. A, 2002, 948, 321-329.
 Ahrer, W.; Scherwenk, E.; Buchberger, W., Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrochromatography or capillary electrophoresis with electrospray mass spectrometry, J. Chromatogr. A, 2001, 910, 69-78.
 Ali, I.; Gupta, V. K.; Aboul-Enein, H. Y., Chiral resolution of some environmental pollutants by capillary electrophoresis, Electrophoresis, 2003, 24, 1360-1374.
 Andersson, M.; Hultin, U. -K.; Sokolowski A., Effects of Amine Additives on the Resolution of Antipsychotic and Antidepressant Drugs on a Cyanoalkyl HPLC Column, Chromatographia, 1998, 48, 770-776.
 Blanco, M.; Gonz?lez, J. M.; Torras, E., Enantiomeric purity determination of ketoprofen by capillary electrophoresis: development and validation of the method, Anal. Bioanal. Chem., 2003, 375, 157-163.
 Bonato, P. S.; Del Lama, M. P. F. M.; Carvalho, R., Enantioselective determination of ibuprofen in plasma by high-performance liquid chromatography-electrospray mass spectrometry, J. Chromatogr. B, 2003, 796, 413-420.
 Boyd, G. R.; Reemtsma, H.; Grimm, D. A.; Mitra, S., Pharmaceuticals and personal care products(PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada, The Science of the Total Environmental, 2003, 311, 135-149.
 Cole, R.B., Electrospray Ionization Mass Spectrometry, John Wiley & Sons, Ltd., 1997.
 Chiral Application Handbook A Comprehensive Guide on Chiral HPLC Separations, Chromtech. http://www.chromtech.net.au/08/pdf08/ct_chiral-handbook_1-40A.pdf
 Davies, N. M., Methods of analysis of chiral non-steroidal anti-inflammatory drugs, J. chromatogr. B, 1997, 691, 229-261.
 Dey, J.; Mohanty, A.; Roy, S.; Khatua, D., Cationic vesicles as chiral selector for enantioseparations of nonsteroidal antiinflammatory drugs by micellar electrokinetic chromatography, J. Chromatogr. A, 2004, 1048, 127-132.
 Eichhold, T. H.; Bailey, R. E.; Tanguay, S. L.; Hoke, S. H., Determination of (R)- and (S )-ketoprofen in human plasma by liquid chromatography/ tandem mass spectrometry following automated solid-phase extraction in the 96-well format, J. Mass Spectrom., 2000, 35, 504-511.
 Fanali, S.; Aturki, Z., Use of cyclodextrins in capillary electrophoresis for the chiral resolution of some 2-arylpropionic acid non-steroidal anti-inflammatory drugs, J. Chromatogr. A, 1995, 694, 297-305.
 Farr?, M.; Ferrer, I.; Ginebreda, A.; Figueras, M.; Olivella, L., Determination of drugs in surface water and wastewater samples by liquid chromatography–mass spectrometry: methods and preliminary results including toxicity studies with Vibrio fischeri, J. Chromatogr. A, 2001, 938, 187-197.
 Farr? M.; Petrovic M.; Barcel? D., Recently developed GC/MS and LC/MS methods for determining NSAIDs in water samples, Anal. Bioanal. Chem., 2007, 387, 1203–1214.
 Fillet, M.; Chankvetadze, B.; Crommen, J.; Blaschke, G., Designed combination of chiral selectors for adjustment of enantioseparation selectivity in capillary electrophoresis, Electrophoresis, 1999, 20, 2691-2697.
 Garrison, A. W., Probing the Enantioselectivity of CHIRAL pesticides, Environ. Sci. Technol., 2006, 40, 16-23.
 Gibson, R.; Becerril-Bravo, E.; Silva-Castro, V.; Jim?nez, B., Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry, J. Chromatogr. A, 2007, 1169, 31-39.
 Gl?wka, F.; Karazniewicz, M., Enantioselective CE method for pharmacokinetic studies on ibuprofen and its chiral metabolites with reference to genetic polymorphism, Electrophoresis, 2007, 28, 2726-2737.
 Heo, S. K.; Cho, J.; Cheon, J. W.; Choi, M. K.; Im, D. S.; Kim, J. J.; Choi, Y. G.; Jeon, D. Y.; Chung, S. J.; Shim, C. K.; Kim, D. D., Pharmacokinetics and pharmacodynamics of ketoprofen plasters, Biopharm. Drug Dispos., 2008, 29, 37-44.
 Hermansson, J.; Eriksson, M., Direct liquid chromatographic resolution of acidic drugs using a chiral α1-acid glycoprotein column (Enantiopac), J. Liq. Chromatogr., 1986, 9, 621-639.
 Hernando, M. D.; Heath, E.; Petrovic, M.; Barcel?, D., Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study, Anal. Bioanal. Chem., 2006, 385, 985-991.
 H?hnerfuss, H.; Shah, M.R., Enantioselective chromatography-A powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental pollutants, J. chromatogr. A, 2009, 1216, 481-502.
 Hynninen, V. V.; Olkkola, K. T.; Leino K.; Lundgren, S.; Neuvonen, P. J.; Rane, A.; Valtonen, M.; Vyyryl?inen, H.; Laine K., Effects of the Antifungals Voriconazole and Fluconazole on the Pharmacokinetics of S-(+)- and R-(-)-Ibuprofen, Antimicrob. Agents. Chemother., 2006, 50, 1967-1972.
 Jabor, V. A. P.; Lanchote, V. L.; Bonato, P. S., Enantioselective analysis of ibuprofen in human plasma by anionic cyclodextrin-modified electrokinetic chromatography, Electrophoresis, 2002, 23, 3041-3047.
 Kasprzyk-Hordem, B.; Dinsdale, R. M.; Guwy, A. J., The effect of signal suppression and mobile phase composition on the simultaneous analysis of multiple classes of acidic/neutral pharmaceuticals and personal care products in surface water by solid-phase extraction and ultra performance liquid chromatography-negative electrospray tandem mass spectrometry, Talanta, 2008, 74, 1299-1312.
 Kosjek, T.; Heath, E.; Krbavčič, A., Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples, Environment International, 2005, 31, 679-685.
 K?mmerer, K., Pharmaceuticals in the Environment, Source, Fate, Effects and Risks, 2001, Springer-Verlag, Berlin.
 Leli?vre, F.; Gareil, P., Chiral separations of underivatized arylpropionic acids by capillary zone electrophoresis with various Cyclodextrins Acidity and inclusion constant determinations, J. Chromatogr. A, 1996, 735, 311-320.
 Li, C.; Benet, L. Z.; Grillo, M. P., Enantioselective covalent binding of 2-phenylpropionic acid to protein in vitro in rat hepatocytes, Chem. Res. Toxicol., 2002, 15, 1480-1487.
 Lin, X.; Zhu, C.; Hao, A., Evaluation of newly synthesized derivative of cyclodextrin for the capillary electrophoretic separation, J. Chromatogr. A, 2004, 1059, 181-189.
 L?ffler, D.; Ternes, T. A., Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry, J. Chromatogr. A, 2003, 1021, 133-144.
 Lovlin, R.; Vakily, M.; Jamali, F., Rapid, sensitive and direct chiral high-performance liquid chromatographic method for ketoprofen enantiomers, J. Chromatogr. B, 1996, 679, 196-198.
 Maci?, A.; Borrull, F.; Calull, M.; Aguilar, C., Different sample stacking strategies to analyse some nonsteroidal anti-inflammatory drugs by micellar electrokinetic capillary chromatography in mineral waters, J. Chromatogr. A, 2006, 1117, 234-245.
 Magnusson, J.; Wan, H.; Blomberg, L. G., Illustration of a simple and versatile scheme for reversing enantiomeric elution order and facilitating enantiomeric impurity determination in capillary electrophoresis, Electrophoresis, 2002, 23, 3013-3019.
 Makino, K.; Itoh, Y.; Teshima, D.; Oishi, R., Determination of nonsteroidal anti-inflammatory drugs in human specimens by capillary zone electrophoresis and micellar electrokinetic chromatography, Electrophoresis, 2004, 25, 1488-1495.
 Matsunaga, H.; Haginaka, J.,Investigation of chiral recognition mechanism on chicken α1-acid glycoprotein using separation system, J. Chromatogr. A, 2006, 1106, 124-130.
 Miao, X. S.; Koenig, B. G.; Metcalfe, C. D., Analysis of acidic drugs in the effluents of sewage treatment plants using liquid chromatography-electrospray ionization tandem mass spectrometry., J. Chromatogr. A, 2002, 952, 139-147.
 Nakada, N.; Tanishima, T.; Shinohara, H.; Kiri, K.; Takada, T., Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment, Water Res., 2006, 40, 3297-3303.
 ?llers, S.; Singer, H. P.; F?ssler, P.; M?ller, S. R., Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/ l level in surface and waste water, J. Chromatogr. A, 2001, 911, 225-234.
 Raffaelli, A.; Saba, A., Atmospheric Pressure Photoionization Mass Spectrometry., Mass Spec. Rev., 2003, 22, 318-331.
 Reddy, A.; Hashim, M.; Wang, Z.; Penn, L.; Stankovic, C. J.; Burdette, D.; Surendran, N.; Cai, H., A novel method for assessing inhibition of ibuprofen chiral inversion and its application in drug discovery, International Journal of Pharmaceutics, 2007,335, 63-69.
 Sadakane, Y.; Matsunaga, H.; Nakagomi, K.; Hatanaka, Y.; Haginaka J., Protein domain of chicken α1-acid glycoprotein is responsible for chiral recognition, Biochemical and Biophysical Research Communications, 2002, 295, 587-590.
 Sigma-Aldrich, http://www.sigmaaldrich.com/taiwan.html
 Tanaka, Y.; Kishimoto, Y.; Terabe, S., Separtion of acidic enantiomers by capillary electrophoresis-mass spectrometry employing a partial filling technique, J. Chromatogr. A, 1998, 802, 83-88.
 Ternes, T. A., Occurrence of drugs in German sewage treatment plants and rivers., Water Res., 1998, 32, 3245-3260.
 Vanderford, B. J.; Pearson, R. A.; Rexing, D. J.; Snyder, S. A., Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry, Anal. Chem., 2003, 75, 6265-6274.
 Vermeulen, B.; Remon, J.P., Validation of a high-performance liquid chromatographic method for the determination of ibuprofen enantiomers in plasma of broiler chickens, J. Chromatogr. B, 2000, 749, 243-251.
 Vollhardt, K. P. C.; Schore, N. E., Organic chemistry: structure and function, fourth edition, 2002, W. H. Freeman and Company.
 Yang, S.; Evenson, M. A., Simultaneous liquid chromatographic determination of antidepressant drugs in human plasma, Anal. Chem., 1983, 55, 994-998.
 Zohmann, A.; Hawel, R. ; Klein, G.; Kullich, W.; L?tsch, G., S(+)-ibuprofen (dexibuprofen)-excellent tolerance has not to be combined with poor clinical efficacy, Inflammopharmacology, 1998, 6, 75-79.
指導教授 丁望賢(Wang-Hsien Ding) 審核日期 2010-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明