博碩士論文 972203012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:44.192.26.60
姓名 陳思孜(Sih-zih Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用掃描式電子穿隧顯微鏡探討聚苯胺及其衍生物在金(111)電極上之吸附與構型變化
(A Comprehensive Study of Adsorption and Polymerization of Aniline and its Derivatives on Au(111) by In Situ Electrochemical STM)
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用掃描式電子穿隧顯微鏡 (scanning tunneling microscopy, STM) 與循環伏安法 (cyclic voltammetry, CV) 來探討陰離子及電位對苯胺及聚苯胺分子吸附在金(111)電極表面上之結構及構型變化的影響。在含有30 mM苯胺的硝酸溶液中,苯胺分子與硝酸根離子在電位0.5 ~ 0.8 V (相對標準氫電極)時會共吸附在電極表面上形成一整齊結構 (3 × 2√3),當電位增加至0.85 V時,此結構會轉變為另一個新結構 (3 × 2√21),在達到聚合電位0.92 V時,苯胺分子會以 (3 × 2√21) 結構為基板進行氧化聚合形成沿著載體方向成長的線性聚苯胺鏈,接下來聚苯胺分子會慢慢以一維成長的方式形成至少兩層具高規則度的分子膜在電極表面上。相反地,苯胺分子在鹽酸溶液中及電位0.8 V下並未有任何整齊結構吸附在電極表面上,雖然缺少整齊吸附結構,苯胺分子依然可以在電位大於0.9 V下進行分子接合而形成規則的線性聚苯胺鏈。另外STM也被用來探討在硝酸、硫酸及過氯酸電解液下,電位對聚苯胺分子構型的影響,當電位在0.8 V及0.6 V來回跳動時,聚苯胺分子的化學結構會隨著電位產生變化進而導致聚苯胺分子會在線性及彎曲的構型之間來回變動。這個由電位主導的構型變化在硝酸中是可逆且快速的,但在硫酸中卻是明顯的不可逆。
本論文也利用即時的STM掃描探討不同醇類分子對聚苯胺分子構型的影響,首先發現在0.5 M硫酸含有30mM苯胺及1.2 M醇類分子的溶液中(甲醇、乙醇、正丙醇),聚苯胺分子皆會從線性轉變為彎曲構型,推測是由於聚苯胺分子與醇類分子之間會形成氫鍵進而擠壓原先的線性分子鏈使其變彎。然而根據Fick’s law所計算出來的醇類分子擴散通量比利用STM結果所計算出來的數值來的大,表示擴散至電極上的醇類分子並未全數與聚苯胺分子作用,推測醇類分子可能需要具備特定的位向才能與聚苯胺分子形成氫鍵。另一方面,聚苯胺分子也會與醇類反應產生水解產物,這個反應的快慢與醇類分子大小有關,也就是說正丙醇是三種醇類中反應性最低的。
除了苯胺之外,利用CV及STM也探討了苯胺衍生物3-甲基苯胺分子與3-磺酸基苯胺分子在金(111)電極上的吸附及聚合過程,在硫酸溶液中,3-甲基苯胺分子首先會在0.5 V形成一整齊吸附結構 (5 × 2√3),覆蓋度為0.2,當電位調整至0.8 V時,此結構會轉變為排列較鬆散的 (5 × 2√3) 及 (3√3 × 2√3) 結構,覆蓋度分別為0.1及0.11。當電位大於 0.9 V時,3-甲基苯胺分子會開始進行氧化聚合,在初始聚合物不滿一層時,聚3-甲基苯胺分子主要是呈現線性構型,但是隨著電位增加聚3-甲基苯胺分子會逐漸轉變為以彎曲的形式成長。而3-磺酸基苯胺分子也會在0.5 及0.8 V時分別形成 (√19 × √31) 與 (2√7 × √31) 兩種整齊結構,然而當電位大於1.0 V時,整齊結構 (2√7 × 31) 會被亞硫酸根離子從電極表面上置換掉。除此之外,本論文也探討了3-磺酸基苯胺與苯胺分子共吸附在電極表面上時的吸附結構,在含有30 mM 苯胺及3 mM 3-磺酸基苯胺分子的硫酸溶液中,苯胺會與3-磺酸基苯胺分子在0.8 V形成一個整齊的共吸附結構 (4 × 2√3),進而引導分子們沿著載體重排的方向進行氧化聚合形成線性的分子鏈,可惜的是根據X射線光電子能譜 (X-ray photoelectron spectroscopy, XPS) 結果來看,所形成的分子鏈並非是苯胺與3-磺酸基苯胺分子共聚合出來的產物而主要是來自於苯胺分子自身的聚合反應。
最後,利用表面增強紅外光譜 (surface-enhanced infrared absorption spectroscopy, SEIRAS) 來探討當苯胺分子吸附在修飾金膜的矽電極上時,其吸附位向隨著電位的變化。從SEIRAS紅外光譜圖得知苯胺分子的吸附位向會隨著電位越正而從平躺轉變為近乎垂直的吸附,而亞硫酸根離子也會因正負電荷相吸的原因而與苯胺分子共吸附在電極表面上。除此之外,聚苯胺分子的化學結構也會隨著電位而改變,根據聚苯胺主鏈中的benzoid及quinoid結構的吸收強度比例可以判別在電位小於0.3 V時,聚苯胺分子主要是以完全還原態吸附在電極表面上,電位在0.3 ~ 0.6 V時,聚苯胺分子會轉變為半氧化(emeraldine),當電位大於0.6 V時,另一種半氧化態會接著出現(nigraniline),而完全氧化態則會開始出現在電位大於0.8 V時且亞硫酸根離子在0.5 V時會開始摻雜入聚苯胺分子中形成具有導電性的半氧化態(emeraldine salt)。
摘要(英) To unravel effects of anion on the molecular structure of polyaniline (PAN), the adsorption of aniline and its subsequent oxidative polymerization on Au(111) electrode were examined by cyclic voltammetry (CV), chronoamperometry and in situ scanning tunneling microscopy (STM) in 0.5 M nitric and hydrochloric acids, respectively. Aniline molecules were coadsorbed with nitrate ions in a highly ordered (3 × 2√3)rect structure between 0.5 and 0.8 V (vs. reversible hydrogen electrode). Raising the potential to 0.85 V forced rearrangement of the (3 × 2√3)rect structure into a hitherto unidentified (3 × 2√21) structure, yielding one-dimension PAN band aligned in the <110> directions of the Au(111) substrate at 0.92 V. PAN film then grew to form a uniform film up to two layers in nitric acid. Oppositely, no ordered molecular adlattice of aniline was noted at the onset potential (~0.8 V) for polymerization in hydrochloric acid. This lack of ordered aniline structure however did not affect coupling of aniline molecules into well-defined linear PAN molecules as the potential was raised to > 0.9 V. Furthermore, the effects of potential on the PAN’s conformation produced on Au(111) electrode in nitric, sulfuric and perchloric acids were also studied by in situ STM. As the potential was modulated between 0.8 and 0.6 V, PAN molecules changed their oxidation states, which manifested in dramatic changes in the molecular conformations between linear and winding conformations. This potential - driven process was fast and reversible in nitric acid, but was largely irreversible in sulfuric acid.
Real-time STM imaging also reveals that linear PAN became crooked upon exposure to methanol, ethanol and propanol, which resulted in formation of hydrogen bonds and twists of PAN molecules. Since diffusion fluxes of these molecules calculated from Fick’s law exceeded that determined from STM results, orientation of alcohol molecules impinging on the electrode could be important in making alcohol-PAN adducts. PAN molecules could decompose by interacting with alcohol molecules. The bulky n-propanol was the least reactive molecule among the alcohols studied here.
In addition to aniline, CV and in situ STM were also used to examine the adsorption and electropolymerization of 3-methylaniline (3-MA) and metanilic acid (MA) on the Au(111) electrode in 0.5 M H2SO4, respectively. 3-MA admolecules were adsorbed in a (5 × 2√3)rect structure (θ = 0.2) at 0.5 V, but rearranged into two less compact adlattices, (5 × 2√3)rect (θ = 0.10) and (3√3 × 2√3)rect structures (θ = 0.11) at 0.8 V. Raising the potential to 0.9 V resulted in oxidation and polymerization of 3-MA. The poly(3-MA) molecules produced in the early stage assumed linear conformation, but became predominantly crooked upon the increase of overpotential. MA molecules also were adsorbed in highly ordered (√19 × √31)rect and (2√7 × √31)rect structures at 0.5 and 0.8 V. These adlattices however were displaced by bisulfate anions at E > 1.0 V. Furthermore, MA and aniline molecules could be coadsorbed in a highly ordered (4 × 2√3)rect structure at 0.8 V in 0.5 M H2SO4+ 30 mM aniline + 3 mM MA, which led to anisotropic oxidative polymerization in the <121> directions of the Au(111) electrode. However, x-ray photoelectron spectroscopy (XPS) results show that the as-produced linear polymeric chains were mainly PAN, rather than copolymer of aniline and MA.
Finally, molecular structures of PAN as a function of potential were investigated by surface-enhanced infrared absorption spectroscopy (SEIRAS). Results obtained show that aniline molecules were adsorbed in flat and upright orientations at negative and positive potentials, respectively. Bisulfate ions were coadsorbed with aniline molecules on the gold electrode as a result of the need to compensate for the charge. SEIRAS shows that PAN molecules were fully reduced at < 0.3 V, and oxidized to emeraldine (0.3 ~ 0.6 V) and nigraniline at E > 0.6 V. These species were characterized by comparing intensity of IR bands due to benzoid and quinoid species in the backbone of PAN molecules. The fully oxidized PAN or pernigraniline was produced first at 0.8 V. IR bands due to ring structures in doped PAN molecules and bisulfate ions were most pronounced at 0.5 V, supporting the chemical form of PAN as emeraldine salt.
關鍵字(中) ★ 掃描式電子穿隧顯微鏡
★ 表面增強紅外光譜
★ 循環伏安法
★ 苯胺衍生物
★ 聚苯胺
★ 電聚合
關鍵字(英) ★ scanning tunneling microscopy,STM
★ surface-enhanced infrared absorption spectroscopy, SEIRAS
★ cyclic voltammetry, CV
★ aniline derivatives
★ polayaniline
★ electropolymerization
論文目次 Contents
摘要 I
Abstract III
謝誌 V

Chapter 1. General Introduction
1-1 Electrochemical Interface at Well-defined Electrode 1
1-2 Conductive Polymers 2
1-3 Polyaniline (PAN) 5
1-3-1 Polymerization Mechanism of PAN 5
1-3-2 Preparation of PAN by Electrochemical Method 7
1-3-3 Conformations of Electrochemically Produced PAN in
H2SO4 8
1-4 The Derivatives of Aniline 11
1-4-1 Aniline Derivatives with Substituents on the
Aromatic Rings or Nitrogen Atoms 11
1-4-2 Aniline Derivatives with Self-doped Substituents on
the Aromatic Rings 12
1-5 Surface-enhanced Infrared Spectroscopy 13
1-6 References 16

Chapter 2. Experimental Section
2-1 Chemicals 21
2-2 Gases 22
2-3 Metals 22
2-4 Equipment 22
2-4-1 Cyclic Votalmmetry, CV 22
2-4-2 In situ Scanning Tunneling Microscope, in situ STM
22
2-4-3 Grinder Polisher 24
2-4-4 X-ray Photoemission Spectroscopy, XPS 24
2-4-5 Fourier Transform Infrared Spectroscopy, FTIR 24
2-4-6 The Attachment of SEIRAS 25
2-4-7 The Electrochemical Cell of SEIRAS 25
2-5 Experimental Steps for CV and in situ STM 28
2-5-1 Preparation of Crystalline Electrodes 28
2-5-2 Preparation of STM Tips 28
2-5-3 Quenching Method 29
2-5-4 Pre-treatments of CV 29
2-5-5 Pre-treatments of STM 29
2-6 Experimental Steps for ex situ XPS 31
2-7 Experimental Steps for SEIRAS 31
2-7-1 Electroless Deposition of Au Film on Si Prism 31
2-7-2 SEIRAS and Electrochemical Analysis 31

Chapter 3. The Electropolymerization of Aniline and Potential-controlled Conformational Changes of Polyaniline Electrochemically Deposited on Au(111) Electrode
3-1 Introduction 35
3-1-1 In situ STM Imaging of PAN’s Conformations in H2SO4
and HClO4 and BSA 35
3-1-2 The Effect of Anions 36
3-2 Results of Electropolymerization of PAN’s Conformation
in 0.5 M HNO3 38
3-2-1 Cyclic Voltammetry of Aniline Adsorbed on Au(111)
in 0.5 M HNO3 38
3-2-2 Cyclic Voltammetry of Aniline Polymerization on
Au(111) in 0.5 M HNO3 42
3-2-3 In situ STM Imaging of Aniline Monomer in 0.5 M
HNO3 + 30 mM Aniline 45
3-2-4 In situ STM Imaging of Aniline Polymerization in
0.5 M HNO3 + 30 mM Aniline 55
3-3 Results of Electropolymerization of PAN’s Conformation
in 0.5M HCl 67
3-3-1 Cyclic Voltammetry of Aniline Adsorbed on Au(111)
in 0.5 M HCl 67
3-3-2 Cyclic Voltammetry of Aniline Polymerization on
Au(111) in 0.5 M HCl 68
3-3-3 In situ STM Imaging of Aniline Polymerization in
0.5 M HCl + 30 mM Aniline 72
3-4 Results of Reversibility of PAN’s Conformation in 0.5M
HNO3, H2SO4 and HClO4 81
3-4-1 Cyclic Voltammetry of Monolayer PAN’s
Characteristic in 0.5 M H2SO4 and HNO3 81
3-4-2 In situ STM Imaging of Reversibility of PAN’s
Conformation between 0.6 and 0.8 V in 0.5 M HNO3,
H2SO4 and HClO4 83
3-4-3 Discussion 91
3-5 Results of Modification of PAN film by the STM 93
3-5-1 In situ STM Imaging of Scratch of PAN Molecules
93
3-5-2 In situ STM Imaging of Repair of Damaged PAN
Molecules 96
3-6 Conclusions 98
3-7 References 100

Chapter 4. In situ STM Examination of the Effect of Alcohols on Polyaniline-modified Au(111) Electrode
4-1 Introduction 103
4-2 Cyclic Voltammetry of PAN Molecules Affected by Alcohols
105
4-3 In situ STM imaging of PAN’s Conformation Affected by
Alcohols 107
4-3-1 Methanol 107
4-3-2 Ethanol and Propanol 116
4-3-3 Discussion 119
4-4 Conclusions 124
4-5 References 125

Chapter 5. The Adsorption and Polymerization of Alkyl Ring-Substituted Aniline on Au(111) Electrode
5-1 Introduction 128
5-2 Results of Electropolymerization of 3-methylaniline in
0.5 M H2SO4 130
5-2-1 Cyclic Voltammetry of 3-MA and poly-3-MA adsorbed
on Au(111) in 0.5 M H2SO4 130
5-2-2 In situ STM Imaging of 3-MA Adsorbed on Au(111) in
0.5 M H2SO4 133
5-2-3 In situ STM Imaging of 3-MA Polymerization on
Au(111) in 0.5 M H2SO4 140
5-2-4 In situ STM Imaging of Poly(3-MA) Decomposition on
Au(111) 145
5-3 The Comparison of Alkyl Ring-Substituted Aniline 149
5-4 Conclusions 157
5-5 References 158

Chapter 6. Adsorption and Polymerization of Metanilic Acid (MA) and Aniline on Au(111) Electrode
6-1 Introduction 160
6-2 Results of MA Adsorbed on Au(111) in 0.5 M H2SO4 162
6-2-1 Cyclic Voltammetry of MA Adsorbed on Au(111) in 0.5
M H2SO4 162
6-2-2 In situ STM Imaging of MA Adsorbed on Au(111) in
0.5 M H2SO4 165
6-3 Results of MA and Aniline Coadsorbed on Au(111) in 0.5 M
H2SO4 171
6-3-1 Cyclic Voltammetry of MA and Aniline Coadsorbed on
Au(111) in 0.5 M H2SO4 171
6-3-2 In situ STM Imaging of MA and Aniline Coadsorbed on
Au(111) in 0.5 M H2SO4 173
6-3-3 Ex situ XPS of MA and Aniline Coadsorbed on Au(111)
in 0.5 M H2SO4 175
6-4 Results of MA and Aniline Polymerization on Au(111) in
0.5 M H2SO4 177
6-4-1 Cyclic Voltammetry of MA and Aniline Polymerization
on Au(111) in 0.5 M H2SO4 177
6-4-2 In situ STM Imaging of MA and Aniline
Polymerization on Au(111) in 0.5 M H2SO4 179
6-4-3 Ex situ XPS of MA and Aniline Polymerization on
Au(111) in 0.5 M H2SO4 180
6-5 Conclusions 184
6-6 References 185

Chapter 7. Adsorption of PAN Molecules on Gold Electrode as Probed by Surface-Enhanced Infrared Spectroscopy
7-1 Introduction 187
7-1-1 Aniline Molecules Adsorbed on Si Prism 187
7-1-2 The IR Bands of PAN 189
7-2 Results of Au-modified Si Prism in 0.1 M Sulfuric Acid
191
7-2-1 Cyclic Voltammetry of Au-modified Si Prism in 0.1 M
Sulfuric Acid 191
7-2-2 SEIRAS Spectra of Au-modified Si Prism in 0.1 M
Sulfuric Acid 191
7-3 Results of SEIRAS Spectra with Aniline and PAN Adsorbed
on Au-modified Si Prism in 0.1 M Sulfuric Acid 195
7-3-1 SEIRAS Spectra of Aniline Adsorbed on Au-modified
Si Prism 195
7-3-2 SEIRAS Spectra of Aniline Polymerization on Au-
modified Si Prism 200
7-4 Conclusions 208
7-5 References 209
Curriculum Vitae 211

參考文獻 Chapter 1.
[1] Jerkiecz, G. Solid-Liquid Electrochemical Interface (ACS Symposium Series 656)
[2] Jerkiecz, G.; Soriaga, M.P.; Uosaki, K.; Wieckowski, A. (Eds.), American Chemical Society, Washington, DC (1997) p. 1.
[3] Schardt, B. C.; Yau, S. L.; Rinaldi, F. Science 1989, 243, 1050.
[4] Mai, C. F.; Shue, C. H.; Yang, Y. C.; Ou Yang, L. Y.; Yau, S.L.; Itaya, K. Langmuir 2005, 21, 4964.
[5] Yang, Y. C.; Yen, Y. P.; Ou Yang, L. Y.; Yau, S. L.; Itaya, K. Langmuir 2004, 20, 10030.
[6] Ou Yang, L. Y.; Yau, S. L.; Itaya, K. Langmuir 2004, 20, 4596.
[7] Shue, C. H.; Yau, S.L.; J. Phys. Chem. B 2001, 105, 5489.
[8] Kim, Y. G.; Yau, S. L.; Itaya, K. J. Am. Chem. Soc. 1996, 118, 393.
[9] Yang, L. M.; Yau, S. L. J. Phys. Chem. B 2000, 104, 1769.
[10] Yau, S. L.; Gao, X.; Chang, S. C.; Schardt, B. C.; Weaver, M. J. J. Am. Chem. Soc. 1991,113, 6049.
[11] Magnussen, O. M.; Ocko, B. M.; Adzic, R. R. J. Phys. Rev. B 1995, 51, 5510.
[12] Wang, J.; Davenport, A. J.; Isaacs, H. S.; Ocko, B. M. Science 1992, 255, 1416.
[13] Toney, M. F.; Melroy, O. R. Electrochemical Interfaces: Modern Techniques for In-Situ Interface Characterization, edited by H. D. Abruna (VCH Verlag Chemical, Berlin, 1991) p. 57.
[14] Toney, M. F. The Application of Surface Analysis Methods to Environmental / Materials Interactions, edited by Baer, D. R., Clayton, C. R., Davis, G. D. (The Electrochemical Society, Pennington, NJ, 1991 p. 200.
[15] Toney, M. F.; McBreen, J. Interface 1993, 2, 22.
[16] Ashley, K.; Pons, S. Chem. Rev. 1988, 88, 673.
[17] Ataka, K. I.; Osawa, M. Langmuir 1998, 14, 951.
[18] Guyot-Sionnest, P.; Tadjeddine, A. Chem. Phys. Lett. 1990, 172, 341.
[19] LeRille, A.; Tadjeddine, A.; Peremans, A.; Zheng, W. Q. Chem. Phys. Lett. 1997, 271, 95.
[20] Tadjeddine, A.; Pluchery, O.; LeRille, A.; Humbert, C.; Buck, M.; Peremans, A.; Zheng, W. Q. J. Electroanal. Chem. 1999, 473, 25.
[21] Tadjeddine, A.; Le Rille, A. Electrochim. Acta 1999, 45, 601.
[22] Friedrich, K. A.; Daum, W.; Klunker, C.; Knabben, D.; Stimming, U.; Ibach, H. Surf. Sci. 1995, 335, 315.
[23] Daum, W.; Dederichs, F.; Muller, J. E. Phys. Rev. Lett. 1998, 80, 766.
[24] Matranga, C.; Guyot-Sionnest, P. J. Chem. Phys. 2000, 112, 7615.
[25] Shirakawa, H.; Lousi, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Comm. 1977, 578.
[26] Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Lousi, E.J.; Gau, S. C.; MacDiamid, A. G. Phys. Rev. Lett. 1977, 39, 1098.
[27] Epstin, A. J.; MacDiarmid, A. G. Polyaniline : Solution, Film, and Oxidation State, Proc. Faraday Society, Faraday Trans. 1989.
[28] Diaz, A. F.; Bargon, J. Handbook of Conducting Polymers, T. A. Skotherim. Ed. 6.
[29] Wessling, B. Synth. Met. 1991, 45, 119.
[30] Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385.
[31] Orata, D.; Buttry, D. A. J. Am. Chem. Soc.1987, 109, 3574.
[32] Takei, T.; Kobayashi, Y.; Hata, H.; Yonesaki, Y.; Kumada, N.; Kinomura, N.; Mallouk, T. E. J. Am. Chem. Soc. 2006, 128, 16634.
[33] Chao, S.; Wrighton, M. S. J. Am. Chem. Soc. 1987, 109, 6627.
[34] Rozsnyai, L. F.; Wrighton, M. S. J. Am. Chem. Soc. 1994, 116, 5993.
[35] Liu, W.; Cholli, A. L.; Nagarajan, R.; Kumar, J.; Tripathy, S.; Bruno, F. F.; Samuelson, L. J. Am. Chem. Soc. 1999, 121, 11345.
[36] Raitman, O. A.; Katz, E.; Buckmann, A. F.; Willner, I. J. Am. Chem. Soc. 2002, 124, 6487.
[37] Zhang, J.; Barker, A. L.; Mandler, D.; Unwin, P. R. J. Am. Chem. Soc. 2003, 125, 9312.
[38] Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. J. Am. Chem. Soc. 2003, 125, 314.
[39] Thiyagarajan, M.; Samuelson, L. A.; Kumar, J.; Cholli, A. L. J. Am. Chem. Soc. 2003, 125, 11502.
[40] Carswell, A. D. W.; O’Rear, E. A.; Grady, B. P. J. Am. Chem. Soc. 2003, 125, 14793.
[41] Zhang, X.; Goux, W. J.; Manohar, S. K. J. Am. Chem. Soc. 2004,126, 4502.
[42] Li, W.; Wang, H. L. J. Am. Chem. Soc. 2004, 126, 2278.
[43] Ma, Y.; Zhang, J.; Zhang, G.; He, H. J. Am. Chem. Soc. 2004, 126, 7097.
[44] Ma, Y.; Ali, S. R.; Wang, L.; Chiu, P. L.; Mendelsohn, R.; He, H. J. Am. Chem. Soc. 2006, 128, 12064.
[45] David, M. M.; Ralph, N. A.; Argersinger, W. J. J. Am. Chem. Soc. 1962, 84, 3618.
[46] Jeff, B.; Ralph, N. A. J. Am.Chem. Soc. 1968, 90, 6596.
[47] Diaz, A. F.; Logan, J. A. J. Electroanal. Chem. 1980, 111, 111.
[48] Paul,E. W.; Ricco, A. J.; Wrighton, M. S. J. Phys. Chem. 1985, 89, 1441.
[49] Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1
1986, 82, 2385.
[50] Okamoto, H. Synth. Met. 1998, 96, 7.
[51] Park, S. M. J. Electrochem. Soc. 1988, 135, 2254.
[52] Park, S. M. J. Electrochem. Soc. 1988, 135, 2497.
[53] Yang, H.; Bard, A. J. J. Electroanal. Chem. 1992, 339, 423.
[54] David, E. S.; Park, S. M. J. Electrochem. Soc. 1988, 135, 2254.
[55] Zhang, A. Q.; Cui, C. Q.; Lee, J. Y. Synth. Met. 1995, 72, 217.
[56] Green, A. G.; Woodhead, A. E. J. Chem. Soc. 1910, 97, 2388.
[57] Green, A. G.; Woodhead, A. E. J. Chem. Soc. 1912, 101, 1117.
[58] Lee, Y.; Chang, C.; Yau, S.; Fan, L.; Yang, Y.; Yang, L. O.; Itaya, K. J. Am. Chem. Soc. 2009, 131, 6468.
[59] Leclerc, M.; Guay, J.; Dao, L?H. Macromolecules 1989, 22, 649.
[60] Yen, W.; Focke, W. W.; Wnek, G. E.; Ray,A.; MacDiarmid, A. G. J. Phys. Chem. 1989, 93, 495.
[61] Nateghi, M. R.; Zahedi, M.; Mosslemin, M. H.; Hashemain, S.; Behzad, S.; Minnai, A. Polymer 2005, 46, 11476.
[62] Dao, L. H.; Lecherc, M.; Guay, J., Chevalier, J. W. Synth. Met. 1989, 29, 377.
[63] D′Aprano, G.; Leclerc, M. J. Electroanal. Chem. 1993, 351, 145.
[64] Sato, M. A.; Tanaka, S.; Kaeriyama, K. J. Chem. Soc., Chem. Commun. 1986, 873.
[65] Jen, K. Y.; Miller, G. G.; Elsenbaumer, R. L. J. Chem. Soc., Chem. Commun. 1986, 1346.
[66] Hotta, S.; Rughooputh, S. D. D. V.; Heeger, A. J.; Wudl, F. Macromolecules 1987, 20, 212.
[67] D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33.
[68] Chen, S.; Hwuang, C.; Tu, H.; Wu, C.; Yau, S.; Fan, L.; Yang, Y. Phys. Chem. Chem. Phys. 2010, 12, 9276.
[69] Chen, S.; Tu, H.; Wu, C.; Yau, S.; Fan, L.; Yang, Y. J. Phys. Chem. C 2010, 114, 8493.
[70] Jie, H.; Meixiang, W. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1277.
[71] Mav, I.; ?igon, M.; ?ebenik, A.; Vohlidal, J. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3390.
[72] Strounina, E.V.; Kane-Maguire, L.A.P.; Wallace, G. G. Synth. Met. 1999, 106, 129.
[73] Yue, J.; Epstein, A. J.; Macdiarmid, A. G. Mol. Cryst. Liq. Cryst. 1990, 189, 255.
[74] Feng, X.; Mao, C.; Yang, G.; Hou, W.; Zhu, J. J. Langmuir 2006, 22, 4384.
[75] Li, C.; Mu, S. Synth. Met. 2004, 144, 143.
[76] Li, C.; Mu, S. Synth. Met. 2005, 149, 143.
[77] Mazeikiene, R.; Niaura, G.; Malinauskas, A. Synth. Met. 2003, 139, 89.
[78] Gale, R. J. Ed. Spectroelectrochemistry: Theory and Practice; Plenum: New York, 1988, 189.
[79] Lipkowski, J.; Ross, P. N. Eds. Adsorption of Molecules at Metal Electrodes; VCH:
New York, 1992, 347.
[80] Iwasita, T.; Nart, F. C. Prog. Surf. Sci. 1997, 55, 271.
[81] Osawa, M. Advances in Electrochemical Science and Engineering Vol.9. 269.
[82] Ataka, K.; Osawa, M. Langmuir 1998,14, 951.
[83] Miyake, H.; Ye, S.; Osawa, M. Electrochem. Commun. 2002, 4, 973.
[84] Ataka, K.; Yotsuyanagi, T.; Osawa, M. J. Phys. Chem. 1996, 100, 10664.
[85] Osawa, M. Bull. Chem. Soc. Jpn.1997, 70, 2861.
[86] Osawa, M. Top. Appl. Phys. 2001, 81, 163.
[87] Osawa, M.; Chalmers, J. M.; Griffiths, P.R. Eds. Handbook of Vibrational Spectroscopy; Wiley: Chichester, 2002, 785.
[88] Osawa, M.; Ataka, K.; Yoshii, K.; Yotsuyanagi, T. J. Electron Spectrosc. Relat. Phenom. 1993, 64/65, 371.
[89] Chang, R.K.; Furtak, T. E., Eds. Surface Enhanced Raman Scattering; Plenum Press,
New York, 1982.
[90] Osawa, M.; Ataka, K.; Yoshii, K.; Nishikawa, Y. Appl. Spectrosc.1993, 47, 1497.

Chapter 3.
[1] Jeon, D.; Kim, J.; Gallagher, M.; Willis, R. Science 1992, 256, 1662.
[2] Planes, J.; Samson, Y.; Cheguettine, Y. Appl. Phys. Lett. 1999, 75, 1395.
[3] Yau, S. T.; Barisci, J.; Spinks, G. Appl. Phys. Lett. 1999, 74, 667.
[4] Wu, C. G.; Chang, S. S. J. Phys. Chem. B 2005, 109, 825.
[5] Yang, L. Y. O.; Chang, C.; Liu, S.; Wu, C.; Yau, S. L. J. Am. Chem. Soc. 2007, 129, 8076.
[6] Lee, Y.; Chang, C.; Yau, S.; Fan, L.; Yang, Y.; Yang, L. O.; Itaya, K. J. Am. Chem. Soc. 2009, 131, 6468.
[7] Yau, S.; Lee, Y.; Chang, C.; Fan, L.; Yang, Y.; Dow, W. P. J. Phys. Chem. C 2009, 113, 13758.
[8] Lee, Y.; Chen, S.; Tu, H.; Yau, S.; Fan, L.; Yang, Y.; Dow, W. Langmuir 2010, 26, 5576.
[9] Desilvestro, J.; Scheifele, W. J. Mater. Chem. 1993, 3, 263.
[10] Dui?, L.; Mandi?, Z.; Kova?i?ek, F. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 105.
[11] Choi, S. J.; Park, S. M. J. Electrochem. Soc. 2002, 149, E26.
[12] Nunziante, P.; Pistoia, G. Electrochim. Acta 1989, 34, 223.
[13] Tang, H.; Kitani, A.; Shiotani, M. Electrochim. Acta 1996, 41, 1561.
[14] Cordova, R.; del Valle, M. A.; Arratia, A.; Gomez, H.; Schrebler, R. J. Electroanal. Chem. 1994, 377, 75.
[15] Kazarinov, V. E.; Andreev, V. N.; Spytsin, M. A.; Shlepakov, A. V. Electrochim. Acta 1990, 35, 899.
[16] Zhang, Y.; Cremer, P. S. Curr. Opin. Chem. Biol. 2006, 10, 658.
[17] Hamelin, A.; Martins, A. M. J. Electroanal. Chem. 1996, 407, 13.
[18] Cuesta, A.; Kleinert, M.; Kolb D. M. Phys. Chem. Chem. Phys. 2000, 2, 5684.
[19] Suto, K.; Magnussen, O. M. J. Electroanal.Chem. 2010, 649, 136.
[20] Magnussen, O. M. Chem. Rev. 2002, 102, 679.
[21] Yang, H.; Bard, A. J. J. Electroanal. Chem.1992, 339, 423.
[22] David, E. S.; Park, S. M. J. Electrochem. Soc.1988, 135, 2254.
[23] Zhang, A. Q.; Cui, C. Q., Lee, J. Y. Synth. Met.1995, 72, 217.
[24] Schemid, A. L.; Cordoba de Torresi, S. I.; Bassetto, A. N., Carlos, I. A. J. Braz. Chem. Soc. 2000, 11, 317
[25] Kunimatsu, K.; Seki, H.; Golden, G. W.; Goldon, J. G., II; Philpott, M. R. Langmuir 1988, 4, 337.
[26] Syomin, D.; Kim, J.; Koel, B. E.; Ellison, G. B. J. Phys. Chem. B 2001, 105, 8387.
[27] Hoft, R. C.; Ford, M. J.; McDonagh, A. M.; Cortie, M. B. J. Phys. Chem. C 2007, 111, 13886.
[28] Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385.
[29] Sautet P.; Bocquet M. L. Phys. Rev. B 1996, 53, 4910.
[30] Poirier G. E. Chem. Rev. 1997, 97, 1117.
[31] Scifo L.; Dubois M.; Brun M.; Rannou P.; Latil S.; Rubio A.; Grevin B. Nano Lett. 2006, 6, 1711.
[32] Ye, Shen; Ishibashi C.; Uosaki K. Langmuir 1999,15, 807.
[33] Kolb, D. M. Prog. Surf. Sci. 1996, 51, 109.
[34] Shi, Z.; Lipkowski, J. J. Electroanal. Chem. 1996, 403, 225.
[35] Liu Y.; Lee Y.; Yang Y.; Jian Z.; Dow W.; Yau S. Langmuir 2010, 26, 13263.
[36] Magnussen, O. M.; Ocko, B. M.; Adzic, R. R.; Wang, J. X. Phys. Rev. B 1995, 51, 5510.
[37] Trivedi, D. C. J. Solid State Electrochem. 1998, 2, 85.
[38] Shacklette, L. W.; Wolf, J. F.; Gould, S.; Baughman, R. H. J. Chem. Phys. 1988, 88, 3955.
[39] Holzle, M. H.; Zwing, V.; Kolb, D. M. Electrochim. Acta 1995, 40, 1237.
[40] Pirug, G.; Bonzel, H. P. Surf. Sci. 1998, 405, 87.
[41] Maurice, V.; Strehblow, H. H.; Marcus, P. Surf. Sci. 2000, 458, 185.
[42] Zambelli, T.; Lagoute, J.; Villagomez Ojeda, C. J.; Coudret, C.; Gauhier J., S. Phys. Chem. B 2005, 109, 14266.
[43] Petrucci, Ralph H.; Harwood, William S.; Herring, F. G.; Madura Jeffrey D. General Chemistry: Principles and Modern Applications. 9th ed. 2007.

Chapter 4.
[1] Nylander, C.; Armgrath, M.; Lundstorm, I. Anal. Chem. Symp. Ser. 1983, 17,159.
[2] Bartlett, P. N,; Ling Chung, S. K, Sensors Actuat. 1989, 19. 141.
[3] Hailin, G., Yucheng, L. Sensors Actuat. B 1994, 21, 57.
[4] Blanc, L. P.; Derouiche, N.; Hadei, A. EI; Germain, J. P.; Maleysson, C. Robert, H. Sensors Actuat. B 1990, 1, 130.
[5] Lin, C. W.; Hwang, B. J.; Lee, C. R. Mater. Chem. Phys. 1998, 55, 139.
[6] Lin, C. W.; Hwang, B. J.; Lee, C. R. Mater. Chem. Phys. 1999, 58, 114.
[7] Hwang, B. J.; Yang, J. Y.; Lin, C. W. Sensors Actuat. B 2001, 75, 61.
[8] Hwang, B. J.; Yang, J. Y.; Lin, C. W. J. Electrochem. Soc. 1999, 146, 1231.
[9] Selampinar, F.; Toppare, L.; Akbulut, U.; Ya?lin, T.; Suzer, ?. Synt. Met. 1995, 68, 109.
[10] Bartlett, P. N,; Ling Chung, S. K, Sensors Actuat. 1989, 20. 287.
[11] Bartlett, P. N,; Archer, P. B.; Ling Chung, S. K, Sensors Actuat. 1989, 19. 125.
[12] Blackwood, D.; Josowicz, M. J. Phys. Chem. 1991, 95. 493.
[13] Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385.
[14] Orata, D.; Buttry, D. A. J. Am. Chem. Soc. 1987, 109, 3574.
[15] Takei, T.; Kobayashi, Y.; Hata, H.; Yonesaki, Y.; Kumada, N.; Kinomura, N.; Mallouk, T. E. J. Am. Chem. Soc. 2006, 128, 16634.
[16] Fedorova, S.; Stejskal, J. Langmuir 2002, 18, 5630
[17] Svetlicic, V.; Schmidt, Andrew J. and Miller, Larry L. Chem. Mater. 1998, 10, 3305.
[18] Tan, C. K.; Blackwood, D. J. Sensors Actuat. B 2000, 71, 184.
[19] Nicholas J. Pinto; Idalia Ramos; Richard Rojas; Wang P.; Alan T. Johnson Jr. Sensors Actuat. B 2008, 129, 621.
[20] Shinohara, H.; Chiba, T.; Aizawa,M. Sensors Actuat. 1988, 13, 79.
[21] Jin, Z.; Su, Y.; Duan, Y. Sensors Actuat. B 2001, 72, 75.
[22] Clark, N. B.; Maher, L. J. React. Funct. Polym. 2009, 69, 594
[23] Virji, Shabnam; Huang, J.; Kaner, Richard B. Weiller, Bruce H. Nano Lett. 2004, 4, 491.
[24] Huang, J.; Virji, Shabnam; Weiller, Bruce H.; Kaner, Richard B. Chem. Eur. J. 2004, 10, 1314.
[25] Huang, J.; Virji, Shabnam; Weiller, Bruce H.; Kaner, Richard B. J. Am. Chem. Soc. 2003,125, 314.
[26] Hwang, H. R.; Roh, J. G.; Lee, D. D.; Lim, J. O.; Huh, J. S. Met. Mater. Int. 2003, 9, 287
[27] Kim, J.; Sohn, S.; Huh, J. Sensors Actuat. B 2005, 108, 409.
[28] Focke, Walter W.; Wnek, Gary E. Wei, Y. J. Phys. Chem. 1987, 91, 5813.
[29] Mu, S.; Kan, J. Synt. Met. 1998, 98, 51.
[30] Zhang, Z.; Wei, Z.; Wan, M. Macromolecules 2002, 35, 5937.
[31] Jaroslav Stejskal; Drahomira Hlavata; Petr Holler; Miroslava Trchova; Jan Proke?; Irina Sapurina Polym Int 2004, 53, 294.
[32] Han, D. Park, S. J. Phys. Chem. B 2004, 108, 13921.
[33] Natalia V Blinova; Jaroslav Stejskal; Miroslava Trchova; Jan Proke? Polym Int 2008, 57, 66.
[34] Choi, S.; Park, S. J. Electrochem. Soc. 2002, 149, 26.
[35] Lee, Y.; Chang, C.; Yau, S.; Fan, L.; Yang, Y.; Yang, L. O.; Itaya, K. J. Am. Chem. Soc. 2009, 131, 6468.
[36] Lee, Y.; Chen, S.; Tu, H.; Yau, S.; Fan, L.; Yang, Y.; Dow, W. Langmuir 2010, 26, 5576.
[37] Christopher T. Hable; Mark S. Wrighton Langmuir 1993, 9, 3284.
[38] Cuesta, A.; Kleinert, M.; Kolb D. M. Phys. Chem. Chem. Phys. 2000, 2, 5684.
[39] Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385.
[40] Okamoto, H. Synthetic Metals. 1998, 96, 7.
[41] Park, S. M. J. Electrochem. Soc. 1988, 135, 2254.
[42] Park, S. M. J. Electrochem. Soc. 1988, 135, 2497.
[43] Moss, G. P.; Smith, P.A.S.; Tavernier, D. et. al. Pure Appl. Chem. 1995, 67, 1307.
[44] Henton, D. R.; McCreery, R. L. Swenton, J. S. J. Org. Chem. 1980, 45, 369.
[45] Pedro de March; Maria Escoda; Marta Figueredo; Josep Font; Angel Alvarez-Larena; Juan F. Piniella J. Org. Chem. 1995, 60, 3895.
[46] W.F. Smith Foundations of Materials Science and Engineering 3rd ed. 2004.
[47] Easteal, A. J. Woolf, L. A. J. Phys. Chem. 1985, 89,1066.

Chapter 5.
[1] Chaudhuri, D.; Sarma, D. D. Chem. Commun. 2006, 2681.
[2] Privett, B. J.; Shin, J. H.; Schoenfisch, M. H. Anal. Chem. 2008, 80, 4499.
[3] Chi, K. W.; Hwang, H. Y.; Jin, S. H.; Jeong, H. M.; Yoon, K. S.; Kim, J. M.; Lee, C. W. Chem. Commun. 2009, 1647.
[4] Zhang, L. Electrochim. Acta 2007, 52, 6969.
[5] He, H.; Zhu, J.; Tao, N. J.; Nagahara, L. A.; Amlani, I.; Tsui, R. J. Am. Chem. Soc.2001, 123, 7730.
[6] Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. J. Am. Chem. Soc. 2002, 125, 314.
[7] Lindfors, T.; Ivaska, A. J. Electroanal. Chem. 2002, 531, 43.
[8] Huang, L. M.; Wen, T. C.; Gopalan, A.; Ren, F.Mater. Sci. Eng. B 2003, 104, 88.
[9] Janata, J.; Josowicz, M. Nat. Mater. 2003, 2, 19.
[10] Liu, H.; Kameoka, J.; Czaplewski, D. A.; Craighead, H. G. Nano Lett. 2004, 4, 671.
[11] Mascaro, L. H.; Gonclaves, D.; Bulhoes, L. O. S.Thin Solid Films 2004, 461, 243.
[12] Leger, J. M.; Beden, B.; Lamy, C.; Ocon, P.; Sieiro, C. Synth. Met. 1994, 62, 9.
[13] Leclerc, M.; Guay, J.; Dao, L. H. Macromolecules1989, 22, 649.
[14] Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; MacDiarmid, A. G. J. Phys. Chem.1989, 93, 495.
[15] Schemid, A. L.; Cordoba de Torresi, S. I.; Bassetto, A. N.; Carlos, I. A. J. Braz. Chem. Soc. 2000, 11, 317.
[16] Dao, L. H.; Leclerc, M.; Guay, J.; Chevalier, J. W. Synth. Met. 1989, 29, 377.
[17] D’Aprano, G.; Leclerc, M.; Zotti, G. J. Electroanal. Chem.1993, 351, 145.
[18] Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; MacDiarmid, A. G.
Macromolecules 1991, 24, 779.
[19] Wei, Y.; Hariharan, R.; Patel, S. A. Macromolecules 1990, 23, 758.
[20] Mena-Osteritz, E.; Baerle, P. AdV. Mater. 2006, 18, 447.
[21] Scifo, L.; Dubois, M.; Brun, M.; Rannou, P.; Latil, S.; Rubio, A.; Grevin, B. Nano Lett. 2006, 6, 1711.
[22] Ou Yang, L. Y.; Chang, C.; Liu, S.; Wu, C.; Yau, S. L. J. Am. Chem. Soc. 2007, 129, 8076.
[23] Yau, S.; Lee, Y.; Chang, C.; Fan, L.; Yang, Y.; Dow, W. P. J. Phys. Chem. C 2009, 113, 13758.
[24] Lee, Y.; Chang, C.; Yau, S.; Fan, L.; Yang, Y.; Yang, L. O.; Itaya, K. J. Am. Chem. Soc. 2009, 131, 6468.
[25] Sakaguchi, H.; Matsumura, H.; Gong, H.; Abouelwafa, A. M. Science 2005, 310, 1002.
[26] Sakaguchi, H.; Matsumura, H.; Gong, H. Nat. Mater. 2004, 3, 551.
[27] Yau, S.; Lee, Y.; Chang, C.; Dow, W. P. Chem. Commun. 2009, 5737.
[28] Bard, A. J.; FaulknerL. R. Electrochemical Methods – Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc.: New York, 2001.
[29] Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385.
[30] David, E. S.; Su-Moon, P. J. Electrochem. Soc.1988, 135, 2491.
[31] David, E. S.; Su-Moon, P. J. Electrochem. Soc.1989, 136, 427.
[32] Syomin, D.; Kim, J.; Koel, B. E.; Ellison, G. B. J. Phys. Chem. B 2001, 105, 8387.
[33] Hoft, R. C.; Ford, M. J.; McDonagh, A. M.; Cortie, M. B. J. Phys. Chem. C 2007, 111, 13886.
[34] Zhang, A. Q.; Cui, C. Q.; Lee, J. Y. Synth. Met.1995, 72, 217.
[35] Ivanova, G. M. A. T. N. G. Int. J. Quantum Chem. 2006, 106,1383.

Chapter 6.
[1] Ou Yang, L.Y.; Chang, C.; Liu, S.; Wu, C.; Yau, S. L. J. Am. Chem. Soc. 2007, 129, 8076.
[2] Lee, Y.; Chang, C.; Yau, S.; Fan, L., Yang, Y.; Ou Yang, L.Y.; Itaya, K. J. Am. Chem. Soc. 2009, 131, 6468.
[3] Yau, S.; Lee, Y.; Chang, C.; Fan, L.; Yang, Y.; Dow, W. J. Phys. Chem. C 2009, 113, 13758.
[4] Chen, S.; Hwuang, C.; Tu, H.; Wu, C.; Yau, S.; Fan, L.; Yang, Y. Phys. Chem. Chem. Phys. 2010, 12, 9276.
[5] Jie, H.; Meixiang, W. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1277.
[6] Mav, I.; ?igon, M.; ?ebenik, A.; Vohlidal, J. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3390.
[7] Strounina, E. V.; Kane-Maguire, L. A. P.; Wallace, G. G. Synth. Met. 1999, 106, 129.
[8] Yue, J.; Epstein, A. J.; Macdiarmid, A. G. Mol. Cryst. Liq. Cryst. 1990, 189, 255.
[9] Lee, J. Y.; Cui, C. Q.; Su, X. H.; Zhou, M. S. J. Electroanal. Chem. 1993, 360, 177.
[10] Feng, X.; Mao, C.; Yang, G.; Hou, W.; Zhu, J. J. Langmuir 2006, 22, 4384.
[11] Li, C.; Mu, S. Synth. Met. 2004, 144, 143.
[12] Li, C.; Mu, S. Synth. Met. 2005, 149, 143.
[13] Mazeikiene, R.; Niaura, G.; Malinauskas, A. Synth. Met. 2003, 139, 89.
[14] Itaya, K. Prog. Surf. Sci. 1998, 58, 121.
[15] Lipkowski, J.; Ross, P. Structure of Electrified Interfaces, VCH publishers, New York, 1993.
[16] Li, F.; Tang, L.; Zhou, W.; Guo, Q. J. Am. Chem. Soc. 2010, 132, 13059.
[17] Poirier, G. E. Chem. Rev. 1997, 97, 1117.
[18] Kunitake, M.; Akiba, U.; Batina, N.; Itaya, K. Langmuir 1997, 13, 1607.
[19] Yoshimoto, S.; Itaya, K. Langmuir 2006, 22, 10766.
[20] Pong, I.; Yau, S.; Huang, P.; Chen, M.; Hu, T.; Yang, Y.; Lee, Y. Langmuir 2009, 25, 9887.
[21] Xu, B.; Tao, N. J. Science 2003, 301, 1221.
[22] Chen, S.; Tu, H.; Wu, C.; Yau, S.; Fan, L.; Yang, Y. J. Phys. Chem. C 2010, 114, 8493.
[23] Hamelin, A.; Martins, A. M. J. Electroanal. Chem. 1996, 407, 13.
[24] Cuesta, A.; Kleinert, M.; Kolb, D. M. Phys. Chem. Chem. Phys. 2000, 2, 5684.
[25] Suto, K.; Magnussen, O. M. J. Electroanal.Chem. 2010, 649, 136.
[26] Magnussen, O.,M. Chem. Rev. 2002, 102, 679.

Chapter 7.
[1] Gee, Ch.; Douin, S; Crepin, C; Brechignac, Ph. Chemical Physics Letters 2001, 338, 130.
[2] IR Spectroscopy Tutorial: Amines
http://orgchem.colorado.edu/Spectroscopy/irtutor/aminesir.html
[3] The Nature of Vibrational Spectroscopy
http://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/irspec1.htm
[4] Colthup, Norman B.; Daly, Lawrence H.; Wiberley, Stephen E. Introduction to Infrared and Raman Spectroscopy (Third Edition)
[5] Cao, Y. Synth. Met. 1990, 35, 319.
[6] Ohira, M.; Sakai, T.; Takeuchi, M.; Kobayashi, Y. Tsuji, M. Synth. Met. 1987, 18, 347.
[7] Trchova, M.; Stejskal J. Pure Appl. Chem. 2011, 83, 1803.
[8] Ibrahima, M.; Koglin, E. Acta Chim. Slov. 2005, 52, 159.
[9] Nakayama, M.; Saeki, S.; Ogura, K. Anal. Sci. 1999, 15, 259
[10] Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988, 24, 231.
[11] Mccall, R.; Roe, M.; Ginder, J.; Kusumoto, T.; Epstein, A. Synth. Met. 1989, 29, 433.
[12] Hamelin, A. J. Electroanal.Chem. 1996, 407, 1.
[13] Cuesta, A.; Kleinert, M.; Kolb D.M. Phys. Chem. Chem. Phys. 2000, 2, 5684.
[14] Garcia-Araez, N; Rodriguez, P.; Navarro, V.; Bakker, H. J. ; Koper, T. M. J. Phys. Chem. C 2011, 115, 21249.
[15] Ataka, K.; Yotsuyanagi, T.; Osawa, M. J. Phys. Chem. 1996, 100, 10664.
[16] Ataka, K.; Osawa, M. Langmuir 1998, 14, 951.
[17] Miyake, H.; Ye, S.; Osawa, M. Electrochem. Com. 2002, 4, 973.
[18] Garcia-Araez, N; Rodriguez, P.; Bakker, H. J. ; Koper, T. M. J. Phys. Chem. C 2012, 116, 4786.
[19] Osawa, M. Advances in Electrochemical Science and Engineering Vol.9. 269.
[20] Greenler, R. G. J. Chem. Phys. 1966, 44, 310.
[21] Osawa, M.; Ataka, K.; Yoshii, K.; Nishikawa, Y. Appl. Spectrosc. 1993, 47, 1497.
[22] Yau, S.; Lee, Y.; Chang, C.; Fan, L.; Yang, Y.; Dow, W. P. J. Phys. Chem. C 2009, 113, 13758.
[23] Lipkowski, J.; Ross, P. N. Eds. Adsorption of Molecules at Metal Electrodes; VCH: New York, 1992, 347.
[24] Okamoto, H. Synth. Met. 1998, 96, 7.
[25] Park, S. M. J. Electrochem. Soc. 1988, 135, 2254.
[26] Park, S. M. J. Electrochem. Soc. 1988, 135, 2497.
[27] Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385.
[28] Lee, Y.; Chang, C.; Yau, S.; Fan, L.; Yang, Y.; Yang, L. O.; Itaya, K. J. Am. Chem. Soc. 2009, 131, 6468.
[29] Ou Yang, L. Y.; Chang, C.; Liu, S.; Wu, C.; Yau, S. L. J. Am. Chem. Soc. 2007, 129, 8076.
[30] Green, A. G.; Woodhead, A. E. J. Chem. Soc. 1910, 97, 2388; 1912, 101, 1117.

指導教授 姚學麟(Shueh-lin Yau) 審核日期 2014-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明