博碩士論文 972203017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.145.130.31
姓名 楊欣婕(Hsin-chieh Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 離子液體在氯仿中的聚集行為與其在奈米金屬催化劑合成上之應用
(Aggregation of Ionic Liquid in Chloroform and Its Application in The Synthesis of Metal Nanoparticles for Use as Catalyst)
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
離子液體是近年來很熱門被頻繁探討的新穎溶劑,廣泛的應用在
各個化學研究領域裡。奈米級金屬粒子在催化上的應用也非常受矚
目。本篇主要在探討離子液體及其特殊的物、化性質,可以溶解過渡
金屬鹽類,並且在金屬源還原成奈米粒子的過程中,保護住奈米金屬
粒子,避免粒子聚集。
我們以照光反應和微波反應合成出一系列奈米金屬粒子。先將離
子液體1-丁基-3-乙基咪唑溴化物(1-butyl-3-ethyl-1H-imidazol-3-ium
bromide, 4-2 Br) 和1-丁基-3-乙基咪唑氯化物
(1-butyl-3-ethyl-1H-imidazol-3-ium chloride, 4-2 Cl) 各自溶於氘化氯
仿中,分別和對應的金屬鹽類溴化鈀 (PdBr2) 和四氯金酸 (HAuCl4)
作用,生成奈米金及奈米鈀粒子。
我們發現離子液體 4-2 Br 與10 %之金屬鹽的氯仿溶液,可以用
來追蹤不同濃度離子液體的聚集團簇行為,利用其中金屬鹽類還原成
奈米金屬粒子來顯色,並表徵在TEM 圖片上面。我們也以螢光團染
料3-羥基色原酮的衍生物
2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA)、
2-(4-(dimethylamino)phenyl)-3-hydroxy-4H-chromen-4-one (CF) 的發光光譜和激發光譜,得到離子液體在氯仿中聚集行為的證據。
此等離子液體氯仿溶液中所生成的奈米鈀粒子被固定在離子液
體層內,可以用來進行Heck 反應,為離子液體層與有機起始物/生成
物的兩相催化反應系統,在溫和的條件下即可進行。
摘要(英) Abstract
Ionic liquid (IL) is a very popular medium which has been explored
in recent years. It has been widely employed in various research
fields. Nanoscale transition metal catalysts have also attracted increasing
intrests. It has been mainly the study of special physical and chemical
properties of ILs in order to make use of metal ions. Alternatively, ILs
can prevent the metal nanoparticles from aggregation.
Pd-nanoparticles and Au-nanoparticles were synthesized by UV
irradiation or microwave heating of respective metal halide anions PdBr2
and HAuCl4 in CDCl3 solution of 1-butyl-3-ethyl-1H-imidazol-3-ium
bromide ,chloride(4-2Br and 4-2Cl), respectively.
The 4-2 Br IL with 10 mol % metal salt in chloroform ionic liquid
clustering exhibits at increasing concentration of 4-2 Br. After UV or
microwave irradiation, the metal nanoparticles produced could serve as
the contrasting agent on the TEM images, to correlate the concentrations
of IL with the aggregation phenomena of IL. On a separate study,
fluorescent dyes of 3-hydroxy chromone derivatives
2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA) and
2-(4-(dimethylamino)phenyl)-3-hydroxy-4H-chromen-4-one (CF) have
been used to extract structural information from the luminescence and
excitation spectra, which also reflect the the aggregation of ionic liquid in
chloroform.
The chloroform solution of 4-2 Br and 10% PdBr2 under UV or
microwave irradiation generated the Pd nanoparticles in IL layer of 4-2
Br which also protected the size of Pd nanoparticles from growing too fast. These Pd nanoparticles in IL were used in the Heck reactions.
Initially ionic liquid layer with Pd NPs was added with organic materials
for the two-phase catalytic Heck reactions, which could be carried out
under mild conditions. The combinations of Pd nanoparticles and the IL
conforms to goals of green chemistry in reducing environmental
damages.
關鍵字(中) ★ 奈米
★ 離子液體
關鍵字(英) ★ nanoparticles
★ Ioinc Liquid
論文目次 目錄
目錄----------------------------------------------------------------------------------I
圖目錄----------------------------------------------------------------------------IV
表目錄--------------------------------------------------------------------------XIII
中文摘要-----------------------------------------------------------------------XIV
英文摘要----------------------------------------------------------------------XVI
謝誌---------------------------------------------------------------------------XVIII
第一章緒論------------------------------------------------------------------------1
1-1. 離子液體的起源---------------------------------------------------1
1-2. 離子液體簡介------------------------------------------------------1
1-3. 離子液體的性質---------------------------------------------------4
1-3.1. 熔點(Melting point)----------------------------------------------5
1-3.2. 溶解度 (Solubility) ----------------------------------------------6
1-4. 單核咪唑型陽離子離子液體簡介-------------------------8
1-4.1. 單核咪唑陽離子環上二號位置質子的酸性-----------------8
1-4.2. 咪唑離子液體在不同濃度下的結構變化------------------14
1-4.3. 利用理論計算表現咪唑離子液體微觀下的聚------------18
1-5. 微胞與介面活性--------------------------------------------------20
1-5.1. 離子液體為介面活性劑的一種------------------------------20
1-5.2. 表面張力與臨界微胞濃度(CMC)---------------------------21
1-6. 離子液體在化學反應上的應用--------------------------------24
1-6.1. 溶劑 ( Solvent ) ------------------------------------------------24
1-6.2. 催化劑------------------------------------------------------------25
1-6.3. 離子液體在Heck反應上的應用------------------------------25
1-6.4. Heck反應的發展-----------------------------------------------26
1-7. 研究動機------------------------------------------------------------29
第二章 實驗部份---------------------------------------------------------------30
2-1. 藥品------------------------------------------------------------------30
2-2. 儀器------------------------------------------------------------------32
2-2. 核磁共振譜儀(Nuclear Magnetic Resonance Spectrometer,
簡稱NMR)----------------------------------------------------------------32
2-2.2. 紫外光-可見光光譜儀(Ultraviolet-Visible
Spectrophotometer) -----------------------------------------------------32
2-2.3. 螢光光譜儀(Fluorescence Spectormeter) -------------------33
2-2.4. 原子力顯微鏡 ( Atomic Force Microscopy , AFM ) -----33
2-2.5. 穿透式電子顯微鏡 ( Transmission electron microscopy,
TEM ) ---------------------------------------------------------------------33
2-3. 合成流程------------------------------------------------------------35
2-3.1. 離子液體合成步-------------------------------------------------35
2-3.2. 奈米金屬製備---------------------------------------------------37
2-3.3. 鈀奈米粒子催化Heck反應------------------------------------55
2-3.4. 染料螢光光譜實驗製備---------------------------------------57
第三章 結果與討論------------------------------------------------------------60
3-1. 奈米金屬粒在離子液體裡的形成------------------------------60
3-1.1. 利用照光反應形成鈀奈米粒子------------------------------60
3-1-2. 利用微波反應形成鈀奈米粒子------------------------------66
3-1-3. 利用微波反應形成金奈米粒子------------------------------70
3-2. 離子液體溶於氯仿的聚集行為---------------------------------73
3-2.1. 用金屬成色的方法來觀察咪唑離子液體在溶液中的聚集
現---------------------------------------------------------------------------75
3-3. 以螢光發色團追蹤離子液體於氯仿中聚集的現象---------84
3-3.1. FA螢光團在離子液體氯仿溶液下的光物理表現---------86
3-3.2. CF螢光團在離子液體氯仿溶液下的光物理表現---------91
3-4. 將催化劑應用在Heck 反應上----------------------------------98
3-4.1. 鹼之變化對於此系統的Heck反應的影響------------------98
3-4.2. 芳香鹵化合物上對位基取代之變化-----------------------100
3-5. 結論----------------------------------------------------------------102
參考文獻----------------------------------------------------------------------104
參考文獻 參考文獻
1. Hurley, F. H.; Wier, T. P.; J., J. Electrochem. Soc. 1951, 98, 207.
2. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage,
P. D. Iong. Chem. 1983, 22, 2099.
3. Erbeldinger, M.; Mesiano, A.; Ruessell, A. J. Biotechnol. Prog. 2000,
16,1129.
4. Yanes, E. G.; Gratz, S. R.; Baldwin, M. J.; Robison, S. E.; Stalcup, A.
M. Anal. Chem. 2001, 73, 3838.
5. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.;
Weizbicki, A.; Davis, J. H.; Rogers, R. D. Chem. Commun. 2001,
135.
6. Armstrong, D. W.; He, L.; Liu, Y.-S., Anal. Chem. 1999, 71, 3873.
7. Wei, G. T.; Yang, Z.; Lee, C. Y.; Yang, H. Y.; Chris Wang, C. R. J.
Am. Chem. Soc. 2004, 126, 5036.
8. Hamaguchi, H.; Hayashi, S. Chem. Lett. 2004, 33, 12.
9. Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.
10. Wasserschied, P., Welton, T., Eds.; Ionic Liquids in Synthesis; 2nd Ed.;
Wiley-VCH: Weinheim, 2008.
11. Pernak, J.; Czepukowicz, A.; Pozniak, R. Ind. Eng. Chem. Res. 2001,40, 2379.
12. Holbrey, J. D.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1999, 13,
2133.
13. Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R. Seddon, K. R. J.
Mater. Chem. 1998, 8, 2627.
14. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
15. Migowski, P.; Dupont, J. Chem.-Eur. J. 2007, 13, 32.
16. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
17. Brennecke, J. F.; Anderson, J. L.; Dixon, J. K. Acc. Chem. Res. 2007,
40, 1208.
18. Hiroyuki, O. Bull. Chem. Soc. Jpn. 2006, 79, 1665.
19. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; Mccormac, P. B.;
Seddon, K. R. Org. Lett. 1999, 1, 997.
20. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.; Ohkubo,
K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349.
21. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J.
J. Am. Chem. Soc. 2005, 127, 3298.
22. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
23. Dyson, P. J.; Ellis, D. J.; Parke, D. G.; Welton, T. Chem. Commun.1999, 25.
24. Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233.
25. Chiappe, C.; Imprato, G.; Napolitano, E.; Pieraccini, D. Green Chem.
2004, 6, 33.
26. Vitz, J.; Mac, D. H.; Legoupy, S. Green Chem. 2007, 9, 431.
27. Pan, X.; She, X.; Li, Y.; Zhang, J.; Wang, W.; Miao, Q. J. Org. Chem.
2005, 70, 3285.
28. Han, B.; Zhang, Z.; Xie, Y.; Li, W.; Hu, .; Song, J.; Jiang, T. Angew.
Chem. Int. Ed. 2008, 47, 1127.
29. Yabu, H.; Tajima, A.; Higuchi, T.; Shimomura, M. Chem. Commun.
2008, 4588.
30. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
31. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem.
1982, 1263
32. Crampton, M. R.; Robotham, I. A. J. Chem. Res. 1997, 22
33. Alder, R. W.; Allen, P. R.; Williams, S. J. J. Chem. Soc. Chem.
Commun. 1995, 1267.
34. Bonhate, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.;
Gratzel, M. Inorg. Chem. 1996, 35, 1168.35. Koddermann, T.; Paschek, D.; Ludwig, R. ChemPhysChem 2007, 8,
2464.
36. Wulf, A.; Fumino, K.; Michalik, D.; Ludwig, R. ChemPhysChem
2007, 8, 2265.
37. Bagno, A.; Damico, F.; Saielli, G. J. Phys. Chem. B 2006, 46, 100,
23004
38. Bagno, A.; Damico, F.; Saielli, G. ChemPhysChem 2007, 8, 873.
39. Dong, K.; Zhang, S.; Wang, D.; Yao, X. J. Phys. Chem. A 2006, 31,
110, 9775.
40. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. H.; Watanabe, M. J.
Phys. Chem. B 2005, 109, 6103.
41. Welton, T. Chem. Rev. 1999, 99, 2071.
42. Earle, M. J.; Esperanca, J. M.S.S.; Gilea, M. A.; Lopes, J. N. C.;
Rebelo, L. P.N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature
2006, 439, 831.
43. Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.;
Tschersich, A.; Verevkin, S. P.; Heintz, A. J. Phys. Chem. A 2006, 110,
7303.
44. Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock, K. R. J.; Satterley, C. J.; Villar-Garcia, I. J. Phys. Chem. Chem. Phys. 2007,
9, 982.
45. Santos, L. M. N. B. F.; Lopes, J. N. C.; Coutinho, J. A. P.; Esperancu
a, J. M. S. S.; Gomes, L. R.; Marrucho, I. M.; Rebelo, L. P. N. J. Am.
Chem. Soc. 2007, 129, 284.
46. Emel’yanenko, V. N.; Verevkin, S. P.; Heintz, A. J. Am. Chem. Soc.
2007, 129, 3930.
47. Dasilveira Neto, B. A.; Santos, L. S.; Nachtigall, F. M.; Eberlin, M. N.;
Dupont, J. Angew. Chem. Int. Ed. 2006, 45, 43, 7251.
48. Hunt, P. A.; Kirchner, B.; Welton, T. Chem. Eur. J. 2006, 12, 6762 .
49. Zana, R. Dynamics of Surfactant Self-Assemblies; CRC Press: Taylor
& Francis, 2005.
50. Klein, M. L.; Shinoda, W. Science 2008, 321, 798.
51. Hess, B.; J. Chem. Theory Comput. 2008, 4, 435.
52. Dyson, P.; Khalaila, I.; Luettgen,S.; McIndce, J.; Zhao, D. Chem.
Commun. 2004, 2204.
53. Dorbritz, S.; Ruth, W.; Kragl, U. Adv. Synth. Catal. 2005, 347,1273.
54. Bini, R.; Bortolini, O.; Chiappe, C.; Pieraccini, D.; Siciliano, T. J.
Phys. Chem. B 2007, 111, 598.55. Motirale, B. G.; Yadav, G. D. Ind. Eng. Chem. Res. 2008, 47, 9081.
56. Wang, M. L.; Huang, T. H. Chem. Eng.Comm. 2007, 194, 618.
57. Dupont, J.; Prechtl, M. H.; Scariot, M.; Scholten, J. D.; Machado, G.;
Teixeira, S. R. Inorg. Chem. 2008, 47, 6427.
58. Rees, G. D.; Robinson, B. H. Adv. Mater. 1993, 5, 608
59. Ishida, Y.; Miyauchi, H.; Sigo, K. Chem. Commun, 2002, 2240.
60. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage,
P. D. Inorg. Chem. 1983, 22, 2099 .
61. Jaeger, D. A.; Tucker, C. E. Tetrahedron Lett. 1989, 38.
62. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.;
Seddon, K. R. Org. Lett. 1999, 1, 997.
63. Bőhm, V. P.; Herrmann. W. A. J. Organomet. Chem. 1999, 572, 141.
64. Mehnert, C. P.; Dispenziere, N. C.; Cook, R. A.; Afeworki, M. J. Am.
Chem. Soc. 2002, 124, 12932.
65. Mehnert, C. P.; Mozeleski, E. J.; Cook, R. A. Chem. Commun 2002,
24, 3010.
66. Welton, S. T.; Woolf, J.; Fischer, A. T.; Tetrahedron Lett. 1999, 40,
793.
67. Noto, R.; Anna, F. D.; Marullo, S. J. Org. Chem. 2008, 73, 6224.68. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
69. Yao, Q.; Yang, Z.; Kinney, E. P. J. Org. Chem. 2003, 68, 7528.
70. Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.;
Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127.
71. Negishi, E.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett.
2003, 5, 10.
72. Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
73. Heck, R. F. J. Org. Chem. 1972, 37, 14
74. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.;
Seddon, K. R. Org. Lett. 1999, 1, 997
75. Djakovitchm L.;Koehler, K. J. Am. Chem. Soc. 2001, 123, 5990.
76. Biffis, A.; Zecca, M.; Basato, M. Eur. J. Inorg. Chem. 2001, 1131.
77. Blum, J.; Hamza, K.; Abu-Reziq, R.; Avnir, D. Org. Lett. 2004, 6, 6,
925.
78. Hirao, T.; Tsukuda, T.; Sakurai, H. J. Org. Chem. 2002, 67, 2721.
79. Mi, Z.; Liu, G.; Wang, L.; Zhang, X. Ind. Eng. Chem. Res. 2005, 44,
3846.
80. Rao, C. N. R.; Kulkarni, G. U.; Thomasa, P. J.; Edwards, P. P. Chem.
Soc. Rev. 2000, 29, 27.
81. De Vries, A. H. M.; Mulders, J. M. C. A.; Mommers, J. H. M.
Henderickx, H. J. W.; De Vries, J. G. Org. Lett. 2003, 5, 3285.
82. Nanda, K. K.; Maisels, A.; Kruis, F. E.; Fissan, H.; Stappert, S. Phys.
Rev. Lett. 2003, 9, 106102.
83. Price, K. E.; Mason, B. P.; Bogdan, A. R.; Broadwater, S. J.;
Steinbacher, J. L.; McQuade, D. T. J. Am. Chem. Soc. 2006,
128,10376.
84. Mu, X.-D.; Meng, J.-Q.; Li, Z.-C.; Kou, Y. J. Am. Chem. Soc. 2005,
127, 9694.
85. Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. J. Am.
Chem. Soc. 2006, 128, 8714.
86. Schwartz, J.; Bohm, V. P. W.; Gardiner, M. G.; Grosche, M.;
Hermann, W. A.; Hieringer, W.; Raudaschl-Sieter, G. Chem.Eur. J.
2000, 6, 1773.
87. Byun, J.-W.; Lee, Y.-S Tetrahedron Lett. 2004, 45, 1837.
88. Altava, B.; Burguete, M.; Garcia-Verdugo, E.; Karbass, N.; Luis, S.
V.; Puzary, A.; Sans, V. Tetrahedron Lett. 2006, 47, 2311.
89. Nikhil, R. J.; Wang, Z. L.; Tarasankar, P. Langmuir. 2000, 16, 2457.
90. David, E. C.; Francis, P. Z.; Stephen, M. G.; Royce, W. M. Langmuir 2000, 16, 9699.
91. Chanel, K. Y.; Rainer, J.; Abraham, U.; Henry, W.; Alexander, K.;
Miriam, R.; Jonathan, S. Langmuir 1999, 15, 3486.
92. Daniela, T.; Orietta, M.; Andrea, C.; Claudio,B.; Francesco, V.;
Simonetta, M.; Saverio, R. Macromolecules 2003, 36, 4294.
93. Joaquin, C.; Robert, W. J. S.; Richard, M. C. J. Am. Chem. Soc. 2003,
125, 11190.
94. Francis, P. Z.; Stephen, M. G.; Royce, W. M.; Langmuir 2001, 17,
481.
95. Tetsu, Y.; Kuniko, I.; Nobuo, K. Langmuir 2001, 17, 4701.
96. Wang, C. C.; Chen, D. H.; Huang, T. C. Colloids and Surface A:
Physicochemical and Engineering Aspects 2001, 189, 145.
97. Srikant, P.; Marcia, T. G.; Raymond, C. K.; Karine, M.; Surya, P. G.
K.; George, A. O.; Mark, E. T. Chem. Mater. 2000, 12, 1985.
98. Kensuke, N.; Hideaki, I.; Yoshiki, C. Nano Lett. 2002, 2, 1183.
99. Teranishi,T.; Miyake, M. Chem. Mater. 1998, 10, 594.
100. Kiyoharu, T.; Yoshinori, F.; Yoshitsugu, H.; Takeji, H.; Langmuir
1999, 15, 5200.
101. Marcos, A. G.; Alexandre, P. U.; Giovanna, M.; Ricardo, R. B. C.; Wictor, C. M.; Jonder, M.; Gunter, E.; Jairton, D.; J. Am. Chem. Soc.
2005, 127, 4588.
102. Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H. Chem. Mater. 2000,
12, 3006.
103. Dhas, N. A.; Cohen, H.; Gedanken, A. J. Phys. Chem. B 1997, 101,
6834.
104. Bera, D.; Kuiry, S. C.; Patil, S.; Seal, S. Appl. Phys. Lett. 2003, 82,
3089.
105. Bera, D.; Kuiry, S. C.; Seal, S. J. Phys. Chem. B 2004, 108, 556.
106. Aymonier, C.; Bortzmeyer, D.; Thomann, R.; lhaupt, R. M. Chem.
Mater. 2003, 15, 4874.
107. Pei-Feng H. and Kai-Ming C. Nanotechnology 2004, 15, 1059.
108. Sudeshna, S.; Dipankar, S.; Piyali, D.; Rima, L.; Amitabha, S.
Tetrahedron 2009, 65, 4367
109. Zhang, G.; Zhou, H.; Hu, J.; Liu, M.; Kuang, Y. Green Chem., 2009,
11, 1428
110. Katayama, Y.; Bando, Y.; Miura, T. Transactions of the Institute of
Metal Finishing 2008, 86, 4, 205-210.
111. Zhong, C. M.; Zuo, Y. J.; Jin, H. S.; Wang, T. C.; Liu, S. Q. Acta Cryst. 2006, E62, m2281-m2283.
112. Li, Z.; Liu, Z.; Zhang, J.; Han, B.; Du, J.; Gao, Y.; Jiang, T. J. Phy.
Chem. B 2005, 109, 14445-14448.
113. Ren, L.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P. J. Colloid Interface Sci.
2008, 323, 260-266.
114. Sebnem, E.; Andrey, S. K.; Alexander P. D. Anal. Chimi. Acta.
2002 , 464, 273
115. Xu, L.; Chen, W.; Xiao, J. Organometallics 2000, 19, 1123
116. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.;
Ohkubo, K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349
117. Fei, Z.; Zhao, D.; Pieraccini, D.; Ang, W. H.; Geldbach, T. J.;
Scopelliti, R.; Chiappe, C.; Dyson, P. J. Organometallics 2007, 26,
1588
118. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J.
Am. Soc. Chem. Soc. 2005, 3298
指導教授 劉陵崗、賴重光
(Liu, Ling-Kang、Chung-Kung Lai)
審核日期 2010-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明