博碩士論文 972203035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.218.79.100
姓名 黃雅郁(Ya-yu Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用掃描式電子穿隧顯微鏡探討吡唑及含吡唑液晶分子於金(111)電極上之吸附結構
(In Situ Scanning Tunneling Microscopy of Pyrazole and Pyrazole Liquid Crystal Molecules Adsorbed on Au(111) Electrode)
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 液晶分子的物性及化性與分子間吸引力有相當大的關係,藉由掃描式電子穿隧顯微鏡可以更深入的對分子內部結構及分子間的作用力進行研究。因此本研究將利用掃描式電子穿隧顯微鏡就吡唑及含吡唑液晶分子5-(dodecyloxy)-2- (5-(4-(pentyloxy)phenyl)-1H-pyrazol-3-yl)phenol (簡稱為Pyph-5,12與Pyph-8,12)針對電位變化進行探討。
吡唑分子因分子間氫鍵以二聚體的形式吸附於金(111)電極上,且吸附結構受電位與電解液的改變所影響。在過氯酸系統下,吡唑分子於0.5 V[VS. RHE]前後結構皆為(5 × √13),隨著電位調整,吸附結構發生改變,使得覆蓋度從0.1上升0.2。當電位由0.8 V往正調至0.85 V時,金(111)表面由重排轉變為(1 × 1),吡唑的吸附結構也會隨之改變從(5 × √13)轉變為(√13 × √39)。除此之外,當電解液由過氯酸替換成硫酸時,推測硫酸根會與吡唑分子共吸附於金(111)電極上,但硫酸根與吡唑是否確實有共吸附的現象還有賴其他的實驗證明。
含有吡唑液晶分子Pyph-5,12與Pyph-8,12不同於單純吡唑分子會因分子間氫鍵而形成二聚體,吸附結構是由分子間烷氧基鏈的凡德瓦力主導著。分子會堆疊成層狀,且分子為Smetic 液晶相,分子長軸的方向與層狀分子互相垂直,由高解像STM圖確實可得到此層狀的結構。當電位較正時則得到另一個不同的吸附結構,且此結構轉換是可逆的,故藉由調控電位可以得到不同的吸附結構。
摘要(英) The physical and chemical properties of liquid crystals (LC) owe a great deal to their intermolecular interactions and the devise of STM has yielded insights into how molecules interact with one another. In this study, STM was employed to examine the spatial structures of pyrazole and pyrazole derivatives 5-(dodecyloxy)-2- (5-(4-(pentyloxy)phenyl)-1H-pyrazol-3-yl)phenol (Pyph-5,12 and Pyph-8,12) molecules adsorbed on Au(111) electrode in an electrochemical environment.
In theory, it is possible that the N-H moieties of pyrazole could form dimers through N---H-N(hydrogen-bonding), and the structure of pyrazole onto Au(111) electrode varied with concentration and supporting electrolyte. Molecular-resolution STM imaging in 0.1mM pyrazole/0.1 M HClO4 revealed highly ordered structures of (5 × √13) adsorbed on the reconstructed Au(111) electrode between 0.2 and 0.9 V [vs. RHE]. However, the structure and coverag varied with potential. Increasing the potential to E > 0.85 V lifted the reconstructed Au(111) surface and the ordered pyrazole structure of (√13 × √39) appeared simultaneously. Ordered pyrazole structures of (5 × √13) could be restored by applying potentials negative enough to reinforce the reconstructed Au(111). In addition, the electrolyte replaced by the sulfuric acid, the structure changed, due to the sulfate and pyrazole coadsorbed on Au(111) electrode.
These molecules could form smectic phases, where molecules are stacked in layers with their long axis aligned perpendicularly to the layer. High-quality STM images were obtained to reveal that indeed Pyph-5,12 and 8,12 could be adsorbed in a lamellar phase which resembles closely to the expected layered structure of these molecules in the bulk liquid crystal. Results obtained also show the formation of another chained phase at more positive potentials. Real-time STM imaging revealed transitions between these ordered phases in response to the modulation of potential. The van der Waals interactions between alkoxy chains of Pyph-5,12 appeared to predominate their lateral structures, whereas intermolecular hydrogen bonds formed by pyrazole mesogens could be secondary.
關鍵字(中) ★ 吡唑
★ 液晶分子
★ 掃描式電子穿隧顯微鏡
關鍵字(英) ★ STM
★ Pyrazole
★ Liquid crystal
論文目次 中文摘要................................................. I
英文摘要................................................ II
圖目錄................................................ VIII
表目錄................................................. XII
第一章、緒論 ...................................................... 1
1-1 液晶的簡介 ...................................................... 1
1-2 形成液晶的條件 ...................................................... 1
1-3 液晶的分類 ...................................................... 2
1-3-1 向列型液晶 (Nematic) .............................. 2
1-3-2 層列型液晶(Smectic) ............................. 3
1-3-3 膽固醇(Cholesteric) ............................. 3
1-4 液晶之物理性質 ...................................... 3
1-4-1 光學異向性......................................... 3
1-4-2 介電異向性......................................... 3
1-5 相關文獻探........................................... 4
1-6 研究動機............................................. 5
第二章、實驗部份 ........................................ 8
2-1 實驗用藥品 .......................................... 8
2-1-1 氣體............................................... 8
2-1-2 金屬線材........................................... 8
2-1-3 藥品部分........................................... 8
2-1-4 液晶分子樣品....................................... 8
2-2 實驗用儀器 ......................................... 10
2-2-1 循環伏安儀(Cyclic Voltammetry,CV) ............... 10
2-2-2 掃描式電子穿隧顯微鏡(STM) ........................ 10
2-3 實驗步驟 ........................................... 11
2-3-1 金(111)單晶STM 電極製備 .......................... 11
2-3-2 金(111)單晶CV電極製備 ............................ 11
2-3-3 CV實驗步驟 ....................................... 11
2-3-4 EC-STM實驗步驟 ................................... 12
2-3-5 分子膜的製備...................................... 12
第三章、吡唑分子及含吡唑液晶分子在金(111)電極上之吸附結構13
3-1 吡唑/過氯酸吸附金(111)電極 ......................... 13
3-1-1 金(111)電極在吡唑/過氯酸中之CV圖 ................. 13
3-1-2 吡唑吸附金(111)電極上的STM圖 ..................... 14
3-2 吡唑/硫酸吸附金(111)電極 ........................... 28
3-2-1 金(111)電極在吡唑/硫酸中之CV圖 ................... 28
3-2-2 金(111)電極在吡唑/硫酸中之STM圖 .................. 29
3-3 含吡唑液晶分子Pyph-5,12與Pyph-8,12吸附金(111)電極上 37
3-3-1 Pyph-5,12吸附金(111)電極上的CV圖 ................. 37
3-3-2 Pyph-5,12吸附金(111)電極上的STM圖 ................ 38
3-3-3 濃度對Pyph-5,12吸附層在金(111)電極上的影響 ....... 39
3-3-4 Pyph-8,12吸附金(111)電極上的STM圖 ................ 42
3-4 F-2R3-Pd與F-2R8-Pd吸附金(111)電極上 ................ 63
3-4-1 F-2R3-Pd吸附金(111)電極上的CV圖................... 63
3-4-2 F-2R3-Pd吸附金(111)電極上的STM圖 ................. 63
3-4-3 F-2R8-Pd吸附金(111)電極上的STM圖 ................. 64
第四章、結論 ........................................... 71
4-1 吡唑吸附在金(111)電極 .............................. 71
4-2 Pyph-5,12與Pyph-8,12吸附在金(111)電極 .............. 73
4-3 F-2R3-Pd與F-2R8-Pd吸附在金(111)電極 ................ 74
第五章、參考文獻 ....................................... 75
參考文獻 1. W. Mazurek, a. B. J. K., Inorg. Chem. 1985, 24, 3258.
2. O. Lehmann, a. Z. p., Chem. 1889, 4, 462.
3. Belloni, M., Ph D., School of Chemical Sciences, The University of Birmingham 2002.
4. M.A. Reppy, D. L. G., D.H. Gray, B.A. Pindzola and J.L. Smithers, J.Am. Chem. Soc. 2001, 123, 363.
5. 梁文傑, The Chinese Chem. Soc. 2004, 62 (1), 43.
6. (a) D. Demus, a. L. R., Textures of liquid crystals. Verlag Chemie, New York 1978; (b) G. W. Gray, a. J. W. G., Smectic Liquid Crystals: Textures and Structures. Blackie Press, Glasgow 1984.
7. G. Vertogen, a. W. H. D. J., Thermotropic Liquid Crystals, Fundamentals. Springer Verlag, Berlin 1988.
8. H. S. Kitzerow, C. B., and S. Chandrasekhar, Chirality in Liquid Crystal. Springer, New York 2001.
9. Bahadur, B., Liquid crystals Applications and Uses. World Scientific, Singapore 1993, 1.
10. T. Sekine, T. N., M. Sone, J. Watanabe, S. W. Choi, Y. Takanishi, and H. Takezoe, Jpn. J. Appl. Phys. 1997, 36, 6455.
11. (a) J. K. Spong, H. A. M., L. J. Lacomb, M. M. Dovek J. E. Frommer, and J. S. Foster, Nature 1989, 338 137; (b) D. P. E. Smith, H. H. r., C. Gerber, and G. Binnig Science 1989, 245, 43; (c) J. S. Foster, a. J. E. F., Nature 1988, 333, 542; (d) D. P. E. Smith, J. K. H. H. r., G. Binnig, and H. Nejoh, Nature 1990, 344, 641; (e) L. Askadskaya, C. B., and J. P. Rabe, J. P. Phys. Chem. 1993, 97 (3), 517; (f) F. Charra, a. J. C., Phys. ReV. Lett. 1998, 80 (8), 1682; (g) P. Wu, Q. D. Z., S. D. Xu, C. Wang, S. X. Yin,and C. L. Bai, ChemPhysChem 2001, 12, 750; (h) M. Hara, Y. I., K. Tochigi, H. Sasabe, A. F. Garito, and A. Yamada, Nature 1990, 344, 288.
12. Frommer, J. S. F. a. J. E., Nature 1988, 333, 542.
13. C. J. Li, Q. D. Z., C. Wang, L. J. Wan, S. L. Xu, C. R. Wang, and C. L. Bai, J. Phys. Chem. B 2003, 107, 747.
14. Wan, J. R. G. a. L. J., J. Phys. Chem. B 2005, 109 (40), 18733.
15. (a) A. Ohira, M. S., I. Taniguchi, C. Hirayama, and M. Kunitake, J.Am. Chem. Soc. 2003, 125, 5057; (b) Y. He, T. Y., and E. Borguet, J.Am. Chem. Soc. 2002, 124, 11964; (c) Y. H. T. Ye, a. E. B., J. Phys. Chem. B 2006, 110, 6141; (d) K. Suto, S. Y., and K. Itaya, Langmuir 2006, 22, 10766; (e) S. Yoshimoto, N. Y., T. Fukuda, N. Kobayashi, and K. Itaya, Chem. Commun. 2006, 500.
16. 王彥凱, 國立中央大學化學研究所碩士論文 2009.
17. S. Laschat, A. B., N. Steinke, F. Giesselmann, C. Hgele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, and M. Tosoni, Angew. Chem. Int. Ed. 2007, 46, 4832.
18. R. C. Hoft, M. J. F., A. M. McDonagh, and M. B. Cortie, J. Phys. Chem. C 2007, 111, 13886.
19. (a) S. L. Yau, Y. H. L., and C. Z. Chang, J. Phys. Chem. C 2009, 113, 13758; (b) Y. H. Lee, S. Z. C., H. L. Tu, and S. L. Yau, Langmuir 2010, 26, 5576; (c) S. Z. Chen, H. L. T., C. G. Wu, and S. L. Yau, J. Phys. Chem. C 2010, 114, 8493.
20. (a) 許家豪, 國立中央大學化學研究所博士論文 2005; (b) Villegas, I. W. M. J., J. Electroanal. Chem. 1994, 373, 295.
21. Hamelin, A., J. Electroanal.Chem. 1996, 497, 1.
22. A. K. M. Cuesta, a. D. M. K., Phys. Chem. 2000, 2, 5684.
23. (a) J. Wang, A. J. D., H. S. Issaacs, and B. M. Ocko, Science. 1992, 255, 1416; (b) T. Nishizawa, T. N., Y. Kinoshita, S. Miyashita, G. Sazaki, and H. Komatsu, Surf. Sci. 1996, 367, 73.
24. (a) C. Li, Q. Z., P. Wu, S. Xu, C. Wang, Y. Qiao, L. Wan, L,and C. Bai, J. Phys. Chem. B 2002, 106, 13262; (b) H. J. Yan, J. L., L. J. Wan, and C. L. Bai, J. Phys. Chem. B 2004, 108, 11251; (c) S. D. Feyter, A. F. C. D. S., J. Phys. Chem. B 2005, 109, 4290.
25. B. J. V. Tongol, L. W., S. L. Yau, T. Otsubo, and K. Itaya, The Journal of Physical Chemistry C 2009, 113, 13819.
26. (a) R. Yamada, a. K. U., The Journal of Physical Chemistry B 2000, 104, 6020; (b) K. Uosaki, a. R. Y., Journal of the American Chemical Society 1999, 121, 4090; (c) O. Marchenko, a. J. C., PhysicalReview Letters 2000, 83, 5363.
27. P. Zell, F. M. o., U. Ziener, and B. Rieger, Chem.;Eur. J 2006, 12, 3847.
28. M. Florian, F. D., W. Ulf, Z. Paul, and R. Bernhard, Langmuir 2009, 25 (23), 13606.
29. J. Barbera, C. C., J. L. Serrano, and M. M. Zurbano, Liquid Crystals 1992, 11, 887.
指導教授 姚學麟(Shueh-lin Yau) 審核日期 2011-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明