博碩士論文 972203043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.148.145.122
姓名 何銘軒(Ming-hsuan Ho)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含雙?吩環戊烷之紅色與綠色共軛高分子用於電致變色材料上之研究
(Neutral State Red and Green Electrochromic Conjugated Polymers Based on DOCPDT)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電致變色材料用於智慧型窗戶上時,可作為一新型節能材料。同時也能應用於在電子書與顯示器,共軛高分子因具有應答時間快、色彩多樣性與光學對比高,以及驅動電壓低,著色效率高與元件製備容易等優勢,成為一具有發展潛力的電致變色材料。本研究為新結構電致變色高分子的開發,發展出一系列應用在電致變色材料上的紅色與綠色共軛高分子,我們以DOCPDT做為基本單元,與芳香環Benzene (B)、Biphenyl (BP),或兩個電子受體2,3-di(thiophen-2-yl)-2, 3-dihydroquinoxaline (DTQ)、2,3-di(benzen-2-yl)-2,3-dihydroquinoxaline (DBQ)進行偶合成含兩單元的單體後,再以化學氧化聚合方式聚合成共聚物,分別得到紅色與綠色高分子,以NMR鑑定其結構,再以TGA、SEM、GPC進行基本特性測量,之後再以電化學光學同步裝置測量高分子膜的電致變色特性,由實驗結果得知,共聚物PBDOCPDT-BP在中性態呈現紅色,應答時間可達次秒(0.5s),具有高著色效率(550cm2/C)與高度穩定性(90%),為一優良的紅色電致變色材料,而共聚物PBDOCPDT-DBQ在中性態時呈現綠色,而在氧化態時為穿透度高的淡綠色,在電變色行為方面,應答時間為1s左右,且在一千次顏色改變之後光學對比穩定性可維持90%以上,亦為一優良的綠色電致變色材料。
摘要(英) Electrochromic materials can be applied in Smart Windows to save energy. It also can be used in e-book and display. Conjugated polymers are potentially useful electrochromic materials due to their advantages of fast response time, multiple color, high optical contrast, high coloration efficiency and good processibility. In this study, we focus on the conjugated polymers with three primary color RGB (Red, Green, Blue) with DOCPDT in the polymer backbone. DOCPDT coupled with different moieties such as Benzene (B)、Biphenyl (BP) or electron acceptor such as 2,3-di(thiophen-2-yl)-2, 3-dihydroquinoxaline (DTQ) or 2,3-di(benzenyl)-2, 3-dihydroquinoxaline (DBQ) to form the monomer of the copolymer. The copolymers were obtained by chemical oxidative polymerization of the corresponding monomers. The structures of these copolymers were identified by 1H-NMR spectroscopy and their electrochromic properties were well studied. The copolymer PBDOCPDT-BP shows a beautiful red color in neutral state, with a fast response time (0.5s) high coloration efficiency (550cm2/C) and good stability (90%). PBDOCPDT-DBQ exhibits reversible electrochromic properties with color changes from deep green in the neutral state to light green in the oxidized state. After 1000 cycles of redox switches, the ΔT value more 90% of the original value, is a promising green electrochromic polymer.
關鍵字(中) ★ 共軛高分子
★ 電致變色材料
★ 低能隙高分子
關鍵字(英) ★ processable conducting polymer
★ low bandgap polymer
★ electrochromic materials
論文目次 摘要........................................................................................................i
Abstract................................................................................................ii
目錄......................................................................................................iii
圖目錄................................................................................................viii
表目錄.................................................................................................xii
第一章 序論
1-1 前言.....................................................................................................1
1-2 電致變色原理.....................................................................................2
1-3 電致變色材料的基本參數.................................................................4
1-4 電致變色材料的應用.........................................................................7
1-5 電致變色材料的種類.......................................................................10
1-6 以共軛高分子作為電致變色材料的優點.......................................13
1-7 調變共軛高分子顏色的方式...........................................................16
1-8 合成三原色電致變色共軛高分子...................................................22
1-9 基礎色彩學.......................................................................................22
1-10 研究動機...........................................................................................24
第二章 實驗部分
2-1 實驗藥品.............................................................................................26
2-2 PDOCPDT 共軛高分子與其衍生物合成之實驗流程圖..................30
2-2-1 4,4-Dioctyl-cyclopenta[2,1-b;3,4-b’]dithiophene (DOCPDT)之
合成路徑.....................................................................................30
2-2-2 4,7-dibromobenzo[c][1,2,5]thiadiazole (DiBr-BTDA)、5,8-
dibromo-2,3-di(thiophen-2-yl)-2,3-dihydroquinoxaline (DiBr-
DTQ)與5,8-dibromo-2,3-di(benzene-2-yl)-2,3-dihydro-
Quinoxaline (DiBr-DBQ)之合成路徑........................................31
2-2-3 共聚物單體之合成路徑............................................................32
2-2-4 共聚物高分子之合成路徑........................................................33
2-3 中間產物、單體及共聚物之結構、命名與簡稱.................................34
2-4 合成步驟.............................................................................................39
2-4-1 Di-thiophen-3-yl-methanol 的合成.........................................39
2-4-2 Di-thiophen-3-yl-methanone 的合成........................................40
2-4-3 2,2-Di-thiophen-3-yl-[1,3]dioxolane 的合成............................41
2-4-4 2,2-Bis-(2-iodo-thiophen-3-yl)-[1,3]dioxolane 的合成............42
2-4-5 Cyclopenta[2,1-b;3,4-b']dithiophen-4-dioxolane 的合成.........43
2-4-6 Cyclopenta[2,1-b;3,4-b']dithiophen-4-one 的合成...................43
2-4-7 4H-Cyclopenta[2,1-b;3,4-b']dithiophene 的合成.....................44
2-4-8 4,4-Dioctyl-cyclopenta[2,1-b;3,4-b’]dithiophene 的合成........45
2-4-9 4,4-Dioctyl-2-trimethylstannanyl-4H-cyclopenta[2,1-b:3,4-b']-
dithiophene 的合成....................................................................46
2-4-10 4,7-dibromobenzo[c][1,2,5]thiadiazole 的合成........................47
2-4-11 3,6-dibromocyclohexa-3,5-diene-1,2-diamine 的合成.............48
2-4-12 5,8-dibromo-2,3-di(thiophen-2-yl)-2,3-dihydroquinoxaline
的合成.............................................................................49
2-4-13 5,8-dibromo-2,3-di(thiophen-2-yl)-2,3-dihydroquinoxaline
的合成.............................................................................49
2-4-14 4,4-bis(2-(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]
dithiophene)thienyl)-biphenyl 的合成......................................50
2-4-15 Poly4,4-bis(2-(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]
dithiophene)thienyl)-biphenyl 的合成......................................51
2-4-16 1,4-bis(2-(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]
dithiophene)thienyl)-benzene 的合成.......................................52
2-4-17 Poly[5,8-bis(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]
dithienyl)-2,3-di(thiophen-2-yl)quinoxaline]的合成..............53
2-4-18 5,8-bis(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]dithienyl)-
2,3-di(thiophen-2-yl)quinoxaline 的合成..................................54
2-4-19 Poly[5,8-bis(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]
dithienyl)-2,3-di(thiophen-2-yl)quinoxaline]的合成................56
2-4-20 5,8-bis(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]dithienyl)-
2,3-di(thiophen-2-yl)quinoxaline 的合成................................56
2-4-21 Poly[5,8-bis(4,4-Dioctyl-4H-Cyclopenta[2,1-b;3,4-b’]
dithienyl)-2,3-di(thiophen-2-yl)quinoxaline]的合成................57
2-5 共軛高分子衍生物純化方式.............................................................58
2-6 儀器分析與樣品製備...........................................................................59
2-6-1 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy
( NMR ))..................................................................................................59
2-6-2 紫外光/可見光/近紅外光吸收光譜儀 (Cary 5E UV/VIS/NIR
Spectrometer)..........................................................................................60
2-6-3 膠體滲透層析儀( Gel Permeation Chromato graphy , GPC)..61
2-6-4 熱重分析儀 (Perkin Elmer TGA 7, TGA)..............................62
2-6-5 掃瞄式電子顯微鏡 (Hitachis-2300).......................................63
2-6-6 電化學與光學性質的測試......................................................64
第三章 結果與討論
3-1 PDOCPDT- BP 之合成、鑑定及電致變色性質探討........................68
3-1-1 PBOCPDT-BP 之合成與結構鑑定............................................68
3-1-2 PBDOCPDT-BP 之電致變色性質探討.....................................69
3-2 PBDOCPDT-B 之合成、鑑定及電致變色性質探討.........................77
3-2-1 PBDOCPDT-Bz 之合成與結構鑑定.........................................77
3-2-2 PBDOCPDT-Bz 之電致變色性質探討.....................................77
3-3 PBDOCPDT-DBQ 之合成、鑑定及電致變色性質探討.....................83
3-3-1 PBDOCPDT-DBQ 之合成與結構鑑定.....................................83
3-3-2 PBDOCPDT-DBQ 之電致變色性質探討.................................88
3-4 PBDOCPDT-DTQ 之合成、鑑定及電致變色性質探討.....................96
3-4-1 PBDOCPDT-DTQ之合成與結構鑑定......................................96
3-4-2 PBDOCPDT-DTQ之電化學性質探討......................................96
第四章 結論...................................................................................105
參考文獻...........................................................................................106
附錄...................................................................................................110
參考文獻 [1] F. C. Krebs, Nature Mater. 2008, 7, 766–767
[2] P. R. Somani, S. Radhakrishnan, Materials Chemistry and Physics. 2002, 77, 117-133
[3] A. Watanabe, K. Mori, Y. Iwasaki, Y. Nakamura, S. Niizuma Macromolecules 1987, 20, 1793-1796
[4] J. Fei, K. G. Lim, G. T. R. Palmore, Chem. Mater. 2008, 20, 3832–3839
[5] B. C. Thompson, P. Schottland, K. Zong, J. R. Reynolds, Chem. Mater. 2000, 12, 1563-1571.
[6] C. G. Wu, M. I. Lu, S. J. Chang, C. S. Wei, Adv. Funct. Mater. 2007, 17, 1063-1070.
[7] A. A. Argun, P. H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. MacDiarmid, J. R. Reynolds, Chem. Mater. 2004, 16, 4401-4412.
[8] P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268–320
[9] G. Sonmez, H. Meng, F. Wudl, Chem. Mater. 2004, 16, 574-580
[10] D. R. Rosseinsky, R. J. Mortimer, Adv. Mater. 2001, 13, 783-793
[11] C. G. Granqvist, Solar Energy Materials & Solar Cells 2008, 92, 203–208
[12] M. Gr?tzel, Nature, 2001, 409, 575-576
[13] D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S. N. Rao, N. Stobie, Solid State Ionics 2003, 165,315– 321
[14] J. R. Platt, J. Chem. Phys. 1961, 34, 862-863
[15] R. J. Mortimer, Chemical Society Reviews 1997, 26, 147-156
[16] R. J. Mortimer, Electrochimica Acta 1999, 44, 2971-2981
[17] R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Displays 2006, 27, 2–18
[18] R. M. Walczak, J. R. Reynolds, Adv. Mater. 2006, 18, 1121–1131
[19] G. Sonmez, I. Schwendeman, P. Schottland, K. Zong, J. R. Reynolds, Macromolecules 2003, 36, 639-647
[20] C. G. Granqvist, Solar Energy Materials & Solar Cells 2000, 60, 201-262
[21] P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Adv. Mater. 2008, 20, 2772–2776
[22] P. Tehrani, L. O. Hennerdal, A. L. Dyer, J. R. Reynolds, M. Berggren, J. Mater. Chem, 2009, 19, 1799–1802
[23] S. A. Sapp, G. A. Sotzing, J. L. Reddinger, J. R. Reynolds, Adv. Mater. 1996, 8, 808-811
[24] G. Sonmez, Chem. Commun., 2005, 5251–5259
[25] A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, J. R. Reynolds, Chem. Mater. 1998, 10, 896-902
[26] G. Sonmez, H. Meng, Q. Zhang, F. Wudl, Adv. Funct. Mater, 2003, 9, 726-731
[27] G. A. Sotzing, J. R. Reynolds, P. J. Steel, Chem. Mater. 1996, 8, 882-889
[28] G. A. Sotzing, J. L. Reddinger, J. R. Reynolds, Synthetic Metals 1997, 84, 199-201
[29] D. Witker, J. R. Reynolds, Macromolecules 2005, 38, 7636-7644
[30] J. L. Reddinger, G. A. Sotzing, J. R. Reynolds, Chem. Commun. 1996, 1777-1778
[31] G. A. Sotzing, J. L. Reddinger, A. R. Katritzky, J. Soloducho, R. Musgrave, J. R. Reynolds, Chem. Mater. 1997, 9, 1578 1587
[32] G. Zotti, G. Schiavon, S. Zecchin, L. Groenendaal, Chem. Mater. 1999, 11, 3624 3628
[33] G. A. Sotzing, J. R. Reynolds, J. CHEM. SOC. CHEM. COMMUN. 1995, 703-704
[34] Y. Fu, H. Cheng, R. L. Elsenbaumer, Chem. Mater. 1997, 9, 1720-1724
[35] G. A. Sotzing, C. A. Thomas, J. R. Reynolds, Macromolecules 1998, 31, 3750-3752
[36] S. A. Sapp, G. A. Sotzing, J. R. Reynolds, Chem. Mater. 1998, 10, 2101-2108
[37] C. L. Gaupp, J. R. Reynolds, Macromolecules 2003, 36, 6305-6315
[38] G. Sonmez, C. K. F. Shen, Y. Rubin, F. Wudl, Angew. Chem. Int. Ed. 2004, 43, 1498 –1502
[39] G. Sonmez, H. B. Sonmez, C. K. F. Shen, F. Wudl, Adv. Mater. 2004, 16, 1905-1908
[40] A. Durmus, G. E. Gunbas, L. Toppare, Chem. Mater. 2007, 19, 6247–6251
[41] G. Sonmez, F. Wudl, J. Mater. Chem. 2005, 15, 20–2
[42] U. Salzner, M. E. Kose, J. Phys. Chem. B 2002, 106, 9221 9226
[43] U. Salzner, J. Phys. Chem. B 2002, 106, 9214 9220
[44] B. C. Thompson, P. Schottland, K. Zong, J. R. Reynolds, Chem. Mater. 2000, 12, 1563-1571
[45] B. C. Thompson, P. Schottland, G.Sonmez, J. R. Reynolds, Synthetic Metals 2001, 119, 333-334
[46] A. Kumar, J. R. Reynolds, Macromolecules 1996, 29, 7629-7630
[47] H. W. Heuer, R. Wehrmann, S. Kirchmeyer, Adv. Funct. Mater. 2002, 12, 89-94
[48] D. M. Welsh, A. Kumar, E. W. Meijer, J. R. Reynolds, Adv. Mater. 1999, 11, 1379-1382
[49] L. B. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, J. R. Reynolds, Adv. Mater. 2003, 15, 855-879
[50] L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater. 2000, 12, 481-494
[51] C. L. Gaupp, D. M. Welsh,R. D, Rauh, J. R. Reynolds, Chem.Mater. 2002, 14, 3964-3970
[52] F. Algı, A. Cihaner, Organic Electronics 2009, 10, 704–710
[53] A. Durmus, G. E. Gunbas, L. Toppare, Chem. Mater. 2007, 19, 6247–6251
[54] G. E. Gunbas, A. Durmus, L. Toppare, Adv. Funct. Mater. 2008, 18, 2026–2030
[55] G. E. Gunbas, Asuman Durmus, and Levent Toppare, Adv. Mater. 2008, 20, 691–695
[56] C. G. Wu, M.I. Lu, P. F. Tsai, Macromol. Chem. Phys. 2009, 210, 1851–1855
[57] F. Ozyurt, E. G. Gunbas, A. Durmus, L. Toppare, Organic Electronics 2008, 9, 296–302
[58] O. Atwani, C. Baristiran, A. Erden, G. Sonmez, Synthetic Metals 2008, 158, 83–89
[59] Y. A. Udum, E. Yildiz, G. Gunbas, L. Toppare, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 3723–3731
[60] Y. A. Uduma, A. Durmus, G. E. Gunbas, L. Toppare, Organic Electronics 2008, 9, 501–506
[61] C. L.Pai, C. L. Liu, W. C. Chen, S. A. Jenekhe, Polymer, 2006, 47, 699-708
[62] A. Berlin, A. Zanelli, Chem. Mater. 2004, 16, 3667 3676
[63] G. E. Gunbas, P. Camurlu, I. M. Akhmedov, C. Tanyeli, A. M. Onal, L. Toppare, Journal of Electroanalytical Chemistry 2008, 615, 75–83
[64] P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Nature Materials 2008, 7, 795-799
[65] A, Durmus, G. E. Gunbas, P. Camurlub, L. Toppare, Chem. Commun., 2007, 3246–3248
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明