博碩士論文 972204002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:34.229.113.106
姓名 李冠緯(Kuan-Wei Lee)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位
(Effects of FoxO6 over-expression on terminal myogenic differentiation and defining the FoxO6- binding site in the PGC-1 alpha promoter)
相關論文
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ FoxOs 大量表現對肌肉細胞末期分化的影響
★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現★ Oc4和Nanog共同抑制末端肌肉分化
★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色★ PGC-1α 與 Stra13 間之交互作用
★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制★ 探討小鼠骨骼肌中FoxO6的表現情形
★ 探討FoxO1在肌肉生成細胞中的表現位置變化及抑制肌肉細胞分化的機制★ 建立安全的誘導性幹細胞的重新編寫方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Forkhead box O (FoxO)轉錄因子能夠調節細胞中各種生理功能,包含細胞週期、葡萄糖代謝、壓力反應、細胞分化以及細胞的死亡與存活機制等。在2003年發現了一個新的Forkhead家族成員-FoxO6。由於它缺少了一些重要的胺基酸使得進出細胞核的能力受到影響,其中最重要的是缺少了C端保守的PKB可磷酸化胺基酸,這個位置是FoxO成員主要移出核的調控區域,也因此FoxO6會比其它FoxO成員更容易滯留在細胞核中。雖然目前研究發現,FoxO6主要表現在腦部組織,但在肌肉中也有發現FoxO6的表現,而且FoxO6對於骨骼肌的功能目前尚未清楚,因此FoxO6對骨骼肌的影響成為我們主要的研究目標。肌肉中另一個重要因子-PGC-1 alpha,它是一個PPAR-gamma?的輔助轉錄因子能夠與 PPAR-gamma 相互作用,在粒線體的代謝中更扮演一個非常重要的角色,若是在肌肉中大量表現PGC-1 alpha?會促使肌肉的型態從TypeII肌纖維變成TypeI肌纖維。從我們的研究中發現大量表現FoxO6的穩定細胞株C2C12-mFoxO6比起控制組更能降低肌管的數量及大小,這表示FoxO6能夠抑制肌肉的分化。於是我們推測也許會干擾細胞週期來影響肌肉細胞的分化。然而在流式細胞儀分析實驗中,confluent時期的C2C12-mFoxO6也能與控制組一樣停留在G0/G1期。此外,我們發現了過量表現FoxO6會抑制PGC-1 alpha?基因的表現。於是我們推測FoxO6可能可以直接調控PGC-1 alpha?啟動子的轉錄活性。在啟動子活性試驗中,發現PGC-1 alpha 啟動子的活性會受到FoxO6的調控,而利用EMSA以及Footprinting也證實了FoxO6能夠直接結合在PGC-1?alpha 啟動子上,而在未來,我們希望能利用chip試驗來加以印證FoxO6與PGC-1 alpha?啟動子的關係。
摘要(英) Forkhead box O (FoxO) transcription factors could regulate many cellular functions, including cell cycle, glucose metabolism, stress response, cell differentiation, cell death and survival. FoxO6, one of the forkhead family, was discovered in 2003. It was different from other FoxO factor because FoxO6 remained mostly nuclear due to its impaired shuttling ability . It lacked the conserved C-terminal PKB motif, which was the cause of the shuttling impairment. Although FoxO6 is majorly expressed in developing brain, it is also expressed in muscle and its function in skeletal muscle was unknown. PGC-1 alpha??was a transtcription coactivator that interacted with PPAR-gamma?and?played a key role in mitochondrial metabolism. When PGC-1 alpha?was?overexpressed in muscle, it transformed type2 myofiber into type1 myofiber. Our study had discovered that C2C12-mFoxO6 cell line could decrease the number and size of myotube compared with C2C12-control. We supposed that FoxO6 may be interfere with cell cycle to inhibit myogenic differentiation. However in flow cytometer assay, confluent C2C12-mFoxO6 myoblast also could majorly stay at G0/G1 phase during cell cycle, it meaned that C2C12-mFoxO6 myoblast also had normal cell cycle exit. We also found that overexpression of FoxO6 inhibited expression of PGC-1 alpha gene in confluent C2C12 myoblast. Thus, we supposed that FoxO6 may regulate PGC-1 alpha promoter activity. By using reporter assay we demonstrated that FoxO6 could inhibit the PGC-1?alpha?promoter activity. Then, we supposed FoxO6 may bind directly to PGC-1?alpha promoter. By EMSA and footprinting we demonstrated that FoxO6 really could bind to PGC-1?alpha?promoter. In the future, we hope to confirm the binding site by chromatin immunoprecipitation assy.
關鍵字(中) ★ 肌肉終極分化 關鍵字(英) ★ PGC-1 alpha
★ FoxO6
論文目次 致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
第一章 緒論 1
一肌肉的起源 1
二FoxO (Forkhead box O) 2
三PGC-1 (Peroxisome proliferator-activated receptor?? co-activator 1) 5
四研究動機與目的 7
第二章 實驗方法與材料 9
2-1細胞株與細胞培養 9
2-2質體建構 9
2-3 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 10
2-3-1 PCR反應條件: 10
2-3-2 載體的製備 11
2-3-3 插入(insert)DNA純化 11
2-3-4 接合反應(ligation) 12
2-3-5 大腸桿菌的轉型作用(transformation) 12
2-4 pPyCAGIP-FoxO6-flag穩定細胞株製備 12
2-4-1 質體pPyCAGIP-FoxO6-flag製備 12
2-4-2 細胞培養 13
2-4-3 轉染作用 (Transfection) 13
2-4-4 篩選穩定細胞株 13
2-5 RT-PCR 13
2-5-1 Total RNA 製備 13
2-5-2 反轉錄酶反應(Reverse Transcriptase, RT) 14
2-6 免疫染色 (Immunohistochemistry) 14
2-7 流式細胞儀分析 15
2-8 啟動子活性分析 (promoter assays) 16
2-8-1 轉染作用(trasnsfection) 16
2-8-2 螢火蟲冷光活性方法 ( Luciferase Activity Assay ) 16
2-9 EMSA (Electrophoresis Mobility Shift Assay) 16
2-10 Footprinting 18
第三章 實驗結果 20
3-1 探討 Insulin 對 C2C12-FoxO6s 穩定細胞株分化的影響 20
3-2 觀察過量表現FoxO6s的肌纖維母細胞對細胞週期的影響 21
3-3 大量表現FoxO6的穩定細胞株對PGC-1α表現量的影響 21
3-4 FoxO6轉錄因子在肌纖維母細胞對於PGC-1?啟動子的影響 22
3-5 尋找PGC-1? 啟動子上是否有FoxO6的結合位 22
3-6 利用Footprinting來定序PGC-1? 啟動子上FoxO6的結合位 23
3-7 C2C12 PyCAGIP-FoxO6-flag穩定細胞株分化的情形 23
第四章 討論 25
4-1 在C2C12中大量表現FoxO6對肌肉分化的影響 25
4-2 FoxO6與PGC-1? 之間的關係對於肌肉分化可能的影響 26
第五章 参考文獻 29
第六章 圖表 33
圖一、將大量表現 FoxO6 的穩定細胞株:C2C12-FoxO6 wt、C2C12-FoxO6 S184A、C2C12-FoxO6 T26A 做肌肉分化實驗,並處理 insulin,探討 FoxO6 是否影響分化。 36
圖二、將大量表達 FoxO6 的穩定細胞株:C2C12-FoxO6 wt、C2C12-FoxO6 S184A、C2C12-FoxO6 T26A 分別收取 PMB、CMB 時期,利用流式細胞儀來觀察 FoxO6 對細胞週期的影響。 38
圖三、定量 RT-PCR 觀察大量表現 FoxO6 的穩定細胞株中 PGC-1?的表現量 41
圖四、在 C2C12 中轉染 mPGC-1 ?啟動子以及 pMSCV-FoxO6,觀察 FoxO6 是否調控 mPGC-1 ???啟動子。 43
圖五、利用 EMSA 來尋找 mPGC-1?? 啟動子上是否有 FoxO6 的結合位 47
圖六、利用 Footprinting 分析 mPGC-1? 啟動子上 FoxO6 的結合位 49
圖七、將 C2C12 PyCAGIP-Vector 與 C2C12 PyCAGIP-FoxO6-flag 穩定細胞株進行肌肉分化實驗,並處理 insulin 觀察。 51
附錄一 52
圖一、利用免疫染色觀察 C2C12 control 在處理 insulin 後的分化形態 (2009年方彥心研究資料) 53
圖二、2008年黃暐捷研究資料 54
附錄二 55
Primer對照表 55
附錄三 57
縮寫與全名對照表 57
附錄四 59
I 溶液及試劑配方 59
II 藥品試劑 62
III 酵素和限制酶 62
參考文獻 1. Pourquie O, et al. (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84:461-471
2. Tonegawa A, Funayama N, Ueno N, & Takahashi Y (1997) Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development 124:1975-1984.
3. Johnson RL, Laufer E, Riddle RD, & Tabin C (1994) Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 79:1165-1173.
4. Fan CM & Tessier-Lavigne M (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79:1175-1186.
5. Brill G, et al. (1995) Epithelial-mesenchymal conversion of dermatome progenitors requires neural tube-derived signals: characterization of the role of Neurotrophin-3. Development 121:2583-2594.
6. Ikeya M & Takada S (1998) Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125:4969-4976.
7. Stern HM, Brown AM, & Hauschka SD (1995) Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1. Development 121:3675-3686.
8. Munsterberg AE & Lassar AB (1995) Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite. Development 121:651-660.
9. Dietrich S, Schubert FR, Healy C, Sharpe PT, & Lumsden A (1998) Specification of the hypaxial musculature. Development 125:2235-2249.
10. Cossu G, Tajbakhsh S, & Buckingham M (1996) How is myogenesis initiated in the embryo? Trends Genet 12:218-223.
11. Pownall ME, Gustafsson MK, & Emerson CP, Jr. (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747-783.
12. Tajbakhsh S, Rocancourt D, Cossu G, & Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127-138.
13. Maroto M, et al. (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89:139-148.
14. Boettiger D, et al. (1995) Regulation of integrin alpha 5 beta 1 affinity during myogenic differentiation. Dev Biol 169:261-272.
15. Yagami-Hiromasa T, et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652-656.
16. Bergstrom DA & Tapscott SJ (2001) Molecular Distinction between Specification and Differentiation in the Myogenic Basic Helix-Loop-Helix Transcription Factor Family. Mol. Cell. Biol. 21:2404-2412.
17. Horsley V, Jansen KM, Mills ST, & Pavlath GK (2003) IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle Growth. Cell 113:483-494.
18. Lehmann OJ, Sowden JC, Carlsson P, Jordan T, & Bhattacharya SS (2003) Fox's in development and disease. Trends in Genetics 19:339-344.
19. Accili D & Arden KC (2004) FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation. Cell 117:421-426.
20. Greer EL & Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410-7425.
21. Nakae J, Oki M, & Cao Y (2008) The FoxO transcription factors and metabolic regulation. FEBS Letters 582:54-67.
22. Barthel A, Schmoll D, & Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183-189.
23. Kaestner KH, Knochel W, & Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142-146.
24. Nakae J, Park BC, & Accili D (1999) Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem 274:15982-15985.
25. Rena G, et al. (2002) Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 21:2263-2271.
26. Woods YL, et al. (2001) The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J 355:597-607.
27. Matsuzaki H, Daitoku H, Hatta M, Tanaka K, & Fukamizu A (2003) Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A 100:11285-11290.
28. Kops GJ, et al. (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630-634.
29. Matsuzaki H, et al. (2005) Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A 102:11278-11283.
30. van der Heide LP, Jacobs FM, Burbach JP, Hoekman MF, & Smidt MP (2005) FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J 391:623-629.
31. Jacobs FM, et al. (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959-35967.
32. Tureckova J, Wilson EM, Cappalonga JL, & Rotwein P (2001) Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J Biol Chem 276:39264-39270.
33. Bodine SC, et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704-1708.
34. Kamei Y, et al. (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279:41114-41123.
35. Kitamura T, et al. (2007) A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest 117:2477-2485.
36. Suzuki N, et al. (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117:2468-2476.
37. Lara-Pezzi E, et al. (2007) A naturally occurring calcineurin variant inhibits FoxO activity and enhances skeletal muscle regeneration. J Cell Biol 179:1205-1218.
38. Finck BN & Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615-622.
39. Sadana P & Park EA (2007) Characterization of the transactivation domain in the peroxisome-proliferator-activated receptor gamma co-activator (PGC-1). Biochem J 403:511-518.
40. Andersson U & Scarpulla RC (2001) Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 21:3738-3749.
41. Handschin C, Rhee J, Lin J, Tarr PT, & Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100:7111-7116.
42. Lin J, et al. (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797-801.
43. Leone TC, et al. (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101.
44. Daitoku H, Yamagata K, Matsuzaki H, Hatta M, & Fukamizu A (2003) Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52:642-649.
45. Sandri M, et al. (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103:16260-16265.
46. Brault JJ, Jespersen JG, & Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285:19460-19471.
47. Schmidt M, et al. (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22:7842-7852.
48. Kops GJ, et al. (2002) Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol 22:2025-2036.
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明