博碩士論文 972204007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.118.193.232
姓名 劉依欣(Yi-Hsin Liu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析
(Physiological function assay of class I small heat shock proteins, OsHSP16.9A and OsHSP18.0)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
★ 受熱與ABA調控基因AtRZFP33之生理功能分析★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究
★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來全球暖化對於作物產量造成威脅,因此如何幫助水稻抵抗惡劣環境及提升作物產量皆現在重要的議題。水稻是世界上重要的糧食作物,其供應全球一半以上的人口食用,除此之外它亦是研究單子葉植物的模式植物,可提供我們研究其基因功能。根據我們先前的研究,除熱誘導外,水稻第一族小分子熱休克蛋白質中,OsHSP16.9A會在種子成熟時期表現及OsHSP18.0會受到重金屬銅或鎘誘導表現。為了更進一步了解它們的功能,我們建立OsHSP16.9A和OsHSP18.0持續性表現的轉殖株 (OsHSP16.9A-OE, OsHSP18.0-OE),並建立抑制OsHSP16.9A、OsHSP18.0和sHSPs表現的轉殖株(Oshsp16.9A-RNAi, Oshsp18.0-RNAi, Osshsp-RNAi)。試驗結果發現OsHSP16.9A-OE種子和幼苗與OsHSP18.0-OE的幼苗皆具有對高溫的耐受性;Oshsp18.0-RNAi及Osshsp-RNAi不論在種子或幼苗對於高溫是敏感的。而利用基因表現或缺失的方式分析sHSPs是否參與在水稻的生長與發育中,結果發現Osshsp-RNAi植株其分櫱數會增加同時生長也較遲緩,因此從這個結果,我們推論sHSPs不只扮演著chaperone的功用保護失去活性的蛋白質外,同樣也參與在水稻的生長過程中。此外,我們也發現在Cu及Cd處理下,OsHSP18.0-OE植株比OsHSP16.9A-OE 和野生型植株對於重金屬逆境有較高的耐受性,而所受的氧化性傷害也是較少的,另OsHSP18.0-OE會降低銅誘導的細胞膜破損。這些結果都說明了OsHSP18.0-OE在水稻對抗重金屬逆境時扮演著重要的角色。
摘要(英) Recently global warming is threatening the crop yield. It becomes a critical issue to improve tolerance of rice to harsh environment as well as crop yield. Rice (Oryza sativa) is one of the most important crops in the world and feeds nearly 50% of the world’s population. Besides, it can be a model plant for providing insights into gene functions of monocotyledonous plants. Based on our previous data, we found that rice class I small heat shock proteins (sHSP-CIs) selectively expressed during seed maturation (OsHSP16.9A) and Cu or Cd treatment (OsHSP18.0). To further characterize physiological function of sHSP-CIs, we constructed two transgenic rice plants constitutively overexpressing OsHSP16.9A (OsHSP16.9A-OE) and OsHSP18.0 (OsHSP18.0-OE) and three transgenic rice plants repressing OsHSP16.9A (Oshsp16.9A-RNAi), OsHSP18.0 (Oshsp18.0-RNAi), and sHSPs (Osshsp-RNAi). Our results indicated that Oshsp16.9A-OE seeds and seedlings and Oshsp18.0-OE seedlings had higher thermotolerance than wild type during heat stress. Besides, Osshsp-RNAi plants were sensitive to heat stress. Interesting, gain- and loss-of-function analyses identified that sHSPs involved in rice growth and development. Osshsp-RNAi plants were shown increased in tiller number and delayed in growth. These results suggest that sHSPs can not only function as chaperone to protect denatured proteins but also involve in rice growth process. Furthermore, OsHSP18.0-OE plants showed more resistance than OsHSP16.9A-OE and wild-type plants under Cu and Cd treatment. Similarly, OsHSP18.0-OE plants were less oxidative damage. In addition, OsHSP18.0-OE plants reduced Cu-induced membrane damage. These results indicated OsHSP18.0-OE play important role in heavy metal stress.
關鍵字(中) ★ 水稻
★ 溫度
★ 熱休克蛋白質
★ 重金屬
關鍵字(英) ★ temperature
★ heavy metal
★ heat shock protein
★ rice
論文目次 目錄
摘 要 i
Abstract ii
目錄 iii
縮寫對照表 ivii
壹、緒論 1
環境逆境 1
植物對抗逆境之反應 2
水稻基因體功能研究 2
貳、文獻探討 4
熱休克蛋白質 4
熱逆境反應 5
低溫逆境 6
重金屬逆境 7
作物產量 8
研究起源與目的 9
參、材料與方法 11
一、水稻農桿菌轉殖 11
二、基因表現分析 12
三、生理功能分析 15
四、水稻產量分析 20
肆、結果 23
Class I small heat shock protein 轉植株篩選與mRNA表現情形 23
轉殖株生長情形 24
轉殖株產量分析 24
水稻耐熱性轉植株篩選 26
轉植株逆境抗性分析 27
伍、討論 30
轉殖株生長高度及分糵數分析 30
植株花粉受熱後與產量的關係 31
耐熱性 32
轉殖株經重金屬逆境下抗氧化酵素表現情形 33
轉殖株經重金屬逆境下離子滲漏情形 35
未來研究方向 35
陸、參考文獻 37
柒、圖表 46
捌、附錄 70
圖目錄
圖一、轉殖株水稻中OsHSP16.9A及OsHSP18.0表現情形。 47
圖二、轉殖株水稻中Osshsp-RNAi表現情形。 48
圖三、OsHSP16.9A過量與抑制表現植物生長高度分析。 49
圖四、OsHSP18.0過量與抑制表現植物生長高度分析。 50
圖五、抑制sHSPs表現植物生長高度分析。 51
圖六、轉殖株生長分櫱數分析。 52
圖七、抽穗期各轉植株高度比較。 53
圖八、正常情況下,花粉存活情形。 54
圖九、熱處理後,花粉受熱後表現情形。 55
圖十、冷處理後,花粉遇冷後表現情形。 56
圖十一、冷處理後,植株抽穗情形。 57
圖十二、轉殖株經熱處理、冷處理後光合作用效率之差異。 58
圖十三、種子耐熱性分析。 59
圖十四、幼苗耐熱性分析。 60
圖十五、轉殖株經氯化鎘處理,葉綠素及抗氧化酵素之表現 61
圖十六、轉殖株經硫酸銅處理,葉綠素及抗氧化酵素之表現。 62
圖十七、轉殖株經氯化鎘處理,DAB染色情形及MDA含量測定。 63
圖十八、轉殖株經硫酸銅處理,DAB染色情形及MDA含量測定。 64
圖十九、轉殖株經硫酸銅處理,離子滲漏情形分析。 65
圖二十、野生型植株與轉殖株之種皮顏色。 66
Table1、野生型植株與轉殖株在正常生長條件下,分櫱數、稔實率、
穗長及種子數的統計分析。……………………………………………67
Table2、野生型植株與轉殖株在開花時期,利用38℃高溫處理三小時三天後生長情形,分櫱數、稔實率、穗長及種子數的統計分析。……………68
Table3、野生型植株與轉殖株在開花時期,利用6℃低溫處理24小時後生長情形,分櫱數、稔實率、穗長及種子數的統計析。…………................69
參考文獻 Allen, A. M., Lexer, C. and Hiscock, S. J. (2010). Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Plant Physiol. 154: 1347-1360.
Alonso, A., Queiroz, C. S. and Magalhaes, A. C. (1997). Chilling stress leads to increased membrane rigidity in roots of coffee (Coffea arabica L.) seelings. Biochim. Biophys. Acta 1323: 75-84.
Anderson, J. V., Li, Q. B., Haskell, D. W. and Guy, C. L. (1994). Structural organization of the spinach endoplasmic reticulum-luminal 70-kD heat-shock cognate gene and expression of 70-heatshock genes during cold acclimation. Plant Physiol. 104: 1359-1370.
Baker, S. S., Wilhelm, K. S. and Thomashow, M. F. (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24:701-713
Battisti, D.S. and R.L. Naylor. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science 5911:240-244.
Bohnert, H. J., Nelson, D. E. and Jensen, R. G. (1995). Adaptations to environmental stresses. Plant Cell Environ. 7: 1099-1111.
Bray, E. A. (1993). Molecular responses to water deficit. Plant Physiol. 103: 1035-1040.
Browse, J. and Xin, Z. (2001). Temperature sensing and cold acclimation. Curr Opin Plant Biol. 4: 241-246.
Chaoui, A., Mazhoudi, Z., Ghorbal, M.H. and Ferjani, E. E. (1997). Cadmium and zinc induction of lipid peroxidation and effect on antioxidant enzyme activities in bean (Phsdeolus vulgaris L.). Plant Sci. 127:139-147
Carriger, S. and Vallee, D. (2007). More crop per drop. Rice Today 6: 10-13.
Cheng, C., Yun, K-Y., Ressom, H. W., Mohanty, B., Bajic, V. B., Jia, Y., Yun, S. J. and Delos Reyes, B. (2007). An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. . BMC Genom. 8: 175-193.
Chen, L. M. and Kao, C. H. (1999). Effect of excess copper on rice leaves:evidence for involvement of lipid peroixdase. Bot. Bull. Acad. Sin. 40:283-287
Chinnusamy, V. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Development 17: 1043-1054.
Chinnusamy, V., Zhu, J. and Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12: 444-451.
Choudhary, M., Jetley, U.K., Abash Khan, M., Zutshi, S. and Fatma, T. (2007). Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 66: 204-209.
Das, S., Nayak, M., Patra, B.C., Ramakrishnan, B. and Krishnan, P. (2010). Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions. Indian J. Biochem. Biophys. 47: 178-184.
Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M. and Thomashow, M. F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in coldinduced COR gene expression. Plant J. 16: 433-442.
Gill, S. S., and Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants Plant Physiol. Biochem. 48:909-30.
Gilmour, S. J., Sebolt, A. M., Salazar, M.P., Everard, J. D. and Thomashow, M. F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124: 1854-1865.
Guan, J. C., Jinn, T. L., Yeh, C. H., Feng, S. P., Chen, Y. M. and Lin, C. Y. (2004). Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant. Mol. Biol. 56: 795–809
Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B. and Zhu, J.-K. (2002.). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA 99: 11507-11512.
Guo, X., Wu, Y., Wang, Y., Chen, Y. and Chu, C. (2009). OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230: 227-238.
Guy, C. L. (1990). Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 187-223.
Heath, R. L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem. Biophys. 125: 189–198
Hsienh, M.S., Chen, J. T., Jinn, T. L., Chen, Y. M. and Lin C. Y. (1992). A class of soybean low molecular weight heat shock proteins. Plant Physiol. 99: 1279-1284
Hirano, K., Asano, K., Tsuji, H., Kawamura, M., Mori, H., Kitano, H., Ueguchi-Tanaka, M. and Matsuoka, M. (2010). Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22: 2680-2696.
Ho, S. L., Tong, W. F. and Yu, S. M. (2000). Multiple mode regulation of a cysteine proteinase gene expression in rice. Plant Physiol. 122: 57-66.
Hsu, Y. T. and Kao, C. H. (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Plant Physiol .124: 71–80
Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y. H., Yu, J. Q. and Chen, Z. (2010). Functional analysis of the arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153: 1526-1538.
Iven, T., Strathmann, A., Böttner, S., Zwafink, T., Heinekamp, T., Guivarc'h, A., Roitsch, T and Dröge-Laser, W. (2010). Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J. 63: 155-166.
Jagadish, S., Craufurd, P. and Wheeler, T. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58: 1627-1635.
Jagadish, S. V. K., Muthurajan, R., Oane, R., Wheeler, T. R., Heuer, S., Bennett, J. and Craufurd, P. Q. (2009). Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot. 61: 143-156.
Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S. H., Do Choi, Y., Kim, M., Reuzeau, C. amd Kim, J. K. (2010). Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153: 185-197.
Kakani, V. G., Prasad, P. V. V., Craufurd, P. Q. and Wheeler, T. R. (2002). Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 25: 1651-1661.
Kakani, V. G., Reddy, K. R., Koti, S., Wallace, T. P., Prasad, P. V. V, Reddy, R. V. and Zhao, D. (2005). Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperatures. Ann. Bot. 96: 59-67.
Kanneganti, V., Gupta, A.K. (2008). Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol. Biol. 66: 445–462
Kato, M. and Shimizu, S. (1987) Chlorophyll metabolism in higher plants VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729–735
Kim, E. H., Kim, Y. S., Park S. , Koo , Y.J., Yang , D.C., Chung, Y. Y., Lee, I.J. and Kim, J.K..(2009). Methyl jasmonate reduces grain yield by mediating stress signals to alter apikelet development in rice. Plant Physiol. 149: 1751-1760.
Koskull-Doring, P. V., Scharf, K. D., Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends Plant Sci. 12: 452-457.
Kotak, S., Port, M., Ganguli, A., Bicker, F. and Koskull-Doring, P.V. (2004). Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class a Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J. 39: 98-112.
Li, J., Pandeya, D., Nath, K.,Zulfugarov, I., S.,Yoo, S., Zhang, H., Yoo, J., Cho, S., Koh, H., Kim, D., Seo, H., Kang, B., Lee, C. and Paek, N. (2010). ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant Cell 62: 713-725.
Lee, G. J. and Vierling, E. (2000). A small heat shock protein cooperates with heat shock protein 70 to reactivate a heat-denatured protein. Plant Physiol. 122: 189-197.
Li, Z., PENG, T., XIE, Q., Han, S. and Tian. J. (2010). Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations J. Genet. 89:1-15
Lin, C. Y., Roberts, J. K.and Key, J. L. (1984). Acquisition of thermotolerance in soybean seedlings1. Synthesis and accumulation of heat shock proteins and their cellular localizatioin. Plant Physiol. 74: 152-160
Liu, D., Zhang, X., Cheng, Y., Takano, T. and Liu, S. (2006). rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol. Biochem. 44: 380-386.
Luján, R., Lledías, F., Martínez, L. M., Barreto, R., Cassab, G. I. and Nieto-Sotelo, J. (2009). Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilanavar. Weber. Plant Cell Environ. 32: 1791-1803.
Matsui, T., Omasa, K. and Horie, T. (1997). High temperature induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity, and wind velocity condition. Japanese J. Breed. Crop Sci. 66: 449-455.
Matsui, T., Omasa, K. and Horie, T. (2000). High temperature at flowering inhibit swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Production Sci. 3: 430-434.
Matsui, T., Omasa, K. and Horie, T. (2001). The difference in sterility due to high temperatures during the flowering period among japonica rice varieties. . Plant Production Sci. 4: 90-93.
Matsui, T. and Omasa, K. (2002). Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann. Bot. 89: 683-687.
Mauring, K., Deich, J., Rosell, F.I., McAnaney, T.B., Moerner, W.E. and Boxer, S.G. (2005). Enhancement of the fluorescence of the blue fluorescent proteins by high pressure or low temperature. J. Phys. Chem. B. 109: 12976-12981.
Mejia, R., Gomez-Eichelmann, M. C. and Fernandezm M. S. (1995). Membrane fluidity of Escherichia coli during heat-shock. Biochim. Biophys. Acta 1239: 195-200.
Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., Grover, A. (2009). "Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses." Plant Physiol. and Biochem. 47: 785-795.
Nakano, Y. and Asda, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:807–880.
Neumann, D., zur Nieden, U., Manteuffel, R., Walter, G., Scharf, K. R. and Nover, L.(1987). Intracellular localization of heat shock proteins in tomato cell culture. Eur. J. Cell Biol. 43: 71-81.
Neumann, D., Lichtenberger, O., Gṻnther, D., Tshiersch, K. and Nover, L.(1994). Heat-shock protein induce heavy-metal tolerance in higher plants. Planta 194:360-367.
Nover, L. (1991). Heat shock response. CRC press, Boca Raton.
Orvar, B. L., Sangwan, V., Omann, F. and Dhindsa, R. S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant J. 23: 785-794.
Paradiso, A., Tommasi, F., Gara, L. D. and Pinto, C. D. (2005). Alteration in ascorbate and ascorbate peroxidase in programmed cell death and oxidative stress. 5: 28.
Park, G., Park, J., Yoon, J., Yu, S. and An, G., (2010). A rING finger E3 ligase gene, Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol. Biol. 74: 467-478.
Pelham, H. R. (1982). A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell 30: 517-528.
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C. Visperas, R. M., Zhong, X.,
Centeno, G. S., Khush, G. S. and Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. PROC. NATL. ACAD. SCI. USA 27:9971-9975.
Prasad, P. V. V., Boote, K. J., Allen, L. H., Sheehy, J. E. and Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95: 398-411.
Prasad, P. V. V., Boote, K.J., Allen, L.H., Sheehy, J.E. and Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95: 398-441.
Prasad, T. K., Anderson, M. D., Martin, B. A. and Stewart, C. R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell Environ. 6: 65-74.
Rukmini, M. S., D'Souza, B. and D'Souza, V. (2004). Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients. J. Clin. Bioc. 19: 114-118.
Salem, M. A., Kakani, V. G., Koti, S. and Reddy, K. R. (2007). Pollen based screening of soybean genotypes for high temperatures. Crop Sci. 47: 219-231.
Sangwan, V., Örvar, B.L., Beyerly, J., Hirt, H.and Dhindsa, R.S. (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31: 629–638.
Satake, T. and Yoshida, S. (1978). High temperature-induced sterility in indica rice at flowering. Jap. J. Crop Sci. 47: 6-10
Sarkar, N. K., Kim, Y. and Grover, A. (2009). Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genom. 10: 393.
Satake, T. and Yoshida, S. (1978). High temperature induced sterility in indica rices at flowering. Jap. J. Crop Sci. 47: 6-17.
Savicka, M. and Škute, N. (2010). Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings. Ekologija 56: 26-33.
Scafaro, A. P., Haynes, P. A. and Atwell, B. J. (2009). Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J. Exp. Bot. 61: 191-202.
Sharir, I. N., Isaacson, T., Lurie, S. and Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17: 1829-1838
Schöffl, F., Praändl, R., and Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiol. 117: 1135-1141.
Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y. and Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. J Exp. Bot. 53: 1305-1319.
Spielmeyer, W., Ellis M. H. and Chandle, P. M. (2002). Semidwarf (sd-1), green revolution rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA 99: 9043-9048.
Straus, M. R., Rietz, S., Themaat, E. V. L. V., Bartsch, M. and Parker, J. E. (2010). Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant Cell 62: 628-640.
Su, C. F., Wang, Y. C., Hsieh, T. H., Lu, C. A., Tseng, T. H. and Yu, S. M. (2010). A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 153: 145-158.
Sung, D. Y., Vierling, E. and Guy, C. L. (2001). Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800.
Sunkar, R., Kapoor, A. and Zhu, J. K. (2006). Posttranscriptional induction of two cu/zn superoxide dismutase genes in arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant cell 18:2051-2065
Suzuki, S. (1981). Cold tolerance in rice plants with special reference to the floral characters. I. Varietal differences in anther and stigma lengths and effects of planting densities on these characters. Jap. J. Breed. 31: 57-64.
Suzuki, S. (1982). Cold tolerance with rice plants with special reference to the floral characters. II. Relations between floral characters and the degree of cold tolerance in segregating generations. Jap. J. Breed. 32: 9-16.
Tamura, N., Yoshida, T., Tanaka, A., Sasaki, R., Bando, A., Toh, S., Lepiniec L. and Kawakami, N. (2006). Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiol. 47: 1081-1094.
Thomas, D. S. and Turner, D. W. (2001) Banana leaf gas exchange and chloropyll flurorescence in response to soil drought, shadding and lamina floding. Sci. Hort.
90: 93-108
Thomashow, M. F. (1999). Plant cold tolerance: freezing tolerance genes and regulatory mechanisms. . Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620.
Wang, D., Tyson, M. D. Jackson, S. S. and Yadegari, R. (2006). Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc. Natl. Acad. Sci. USA 103: 13244-13249.
Wang, W., Vinocur, B., Shoseyov, O. and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252.
Wheeler, T. R., Craufurd, P.Q., Ellis, R.H., Porter, J.R. and Vara, Prasad. V. (2000). Temperature variability and the yield of annual crops. Agri. Ecos. Environ. 82: 159-167.
Wu, C., Fu, Y., Hu, G., Si, H., Cheng, S. and Liu, W. (2010). Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta 232: 313-324.
Xiao, B., Huang, Y., Tang, N. and Xiong, L. (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor. Appl. Genet. 115: 35-46.
Xin, Z. and Browse, J. (1998). eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA 95: 7799-7804.
Xin, Z. and Browse, J. (2000). Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ. 23: 893-902.
Yang, G., Xing, Y., Li, S., Ding, J., Yue, B., Deng, K., Li, Y. and Zhu, Y. (2006). Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.). Hereditas 143: 236-245
Yang, J., Zhang, J., Liu, K., Wang, Z. and Liu, L. (2007). Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. J. Plant Growth Regul. 26: 318-328.
Zhang, J. X., Wang, C., Yang, C. Y., Wang, J. Y., Chen, L., Bao, X. M., Zhao, Y. X., Zhang, H. and Liu, J. (2010). The role of arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance. Plant Cell 62: 539-548.
Zou, J., Liu, A., Chen, X., Zhou, X.,Gao, G., Wang, W. and Zhang, X. (2009). Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J. Plant Physiol. 166: 851-861.
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2011-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明