博碩士論文 972204022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:100.24.122.228
姓名 鄧涵方(Han-fang Teng)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制
(Defining the mechanism of valproic acid enhanced Oct4 promoter activation in myogenic cells)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ MyoD對於PGC-1α 基因表現之調控機制
★ 雄性素受體對於肌肉前驅細胞決定的功用★ Nanog和Oct4表現對肌肉分化之影響
★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響
★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控
★ FoxOs 大量表現對肌肉細胞末期分化的影響★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現
★ Oc4和Nanog共同抑制末端肌肉分化★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色
★ PGC-1α 與 Stra13 間之交互作用★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位
★ 探討小鼠骨骼肌中FoxO6的表現情形★ 探討FoxO1在肌肉生成細胞中的表現位置變化及抑制肌肉細胞分化的機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多能性的胚胎幹細胞具有能夠持續生長以及分化成三個胚層細胞的能力。希望能夠利用這些幹細胞去治癒目前針對傳統醫療方式無法治癒的疾病,但其數量及種類稀少,且在來源上引起許多道德上的爭議;甚至移植於人體內會引起免疫排斥作用的干擾。Takahashi and Yamanaka 於 2006 年藉由細胞內大量表現 Oct4, Sox2, Klf4 及 c-Myc 成功將老鼠胚胎纖維母細胞誘導成具有多能特性,類似於幹細胞的 iPS cells。雖然 iPS cells 的形成開啟了利用自體細胞進行治療的可能,但仍然存在許多問題尚待解決,例如:利用病毒帶入質體的方式可能會導致插入突變的產生,以及 re-programming 的效率過低等等…。而在近年有文獻指出許多小分子化合物,像是 VPA、Bix-01924、AZA…等,可有效提升 re-programming 的效率,而我們的研究集中在 VPA 這個 HDAC 的抑制劑。在我們的研究當中發現 VPA 能夠在 P19 及 C2C12 細胞中增強 Oct4 1.9k promoter 的活性,因此希望探討其相關機制。根據實驗結果推測,VPA 可藉由徵召特定的轉錄因子至 Oct4 promoter 上活化其表現。接著進一步找出其結合位,利用 deletion 及突變 Oct4 promoter 上 hormone receptor-binding site 觀察 VPA 活化的效用是否會減弱甚至消失。而在未來的實驗當中希望能找出確切影響的因子,以及結合許多不同的小分子化合物來達到有效提升 reprogramming 效率的成果。
摘要(英) Embryonic stem (ES) cells have the ability to grow indefinitely while maintaining pluripotency, the ability to differentiate into cells of all three germ layers. They can be used to treat a host of diseases, but there are ethical issues about their sources and problem of the possible immune rejection by the host. In 2006, Takahashi and Yamanaka successfully reprogrammed mouse embryonic fibroblasts to induced pulripotent stem cells (iPS cells) by over-expressing Oct4, Sox2, Klf4 and c-Myc. Although iPS cells open the possibility of autologous stem cell for therapy, it still has some risks, such as insertion mutagenesis and low re-programming efficiency, to be overcome. In 2008, a study showed that some small compounds, such as a histone deacetylase inhibitor called VPA, could increase the reprogramming efficiency. In our study we found that VPA could enhance the Oct4 2k promoter activity both in P19 and C2C12 cells, and it was of interest to define the mechanism. We proposed that VPA might recruit a transcription factors to the Oct4 promoter to activate its activity. We made deletion mutants of the Oct4 promoter and also mutated the hormone receptor-binding site on Oct4 promoter to see whether the VPA activaty will be abrogated. We confirmed that HRE was important in the mechanism of VPA activated the Oct4 promoter. In the future, we want to combine different small compounds to see if the iPS cells reprogramming efficiency will be increased.
關鍵字(中) ★ 誘導型多能性幹細胞
★ 肌肉細胞
★ 丙戊酸
關鍵字(英) ★ Valporic acid
★ myogenic cells
★ Induced pluripotent stem cells
論文目次 中文摘要 I
英文摘要 II
致謝 III
一、 緒論 1
一、胚胎發育 (embryogenesis) 1
二、幹細胞 (stem cell) 特性 2
三、誘導型多能性幹細胞 (Induced pluripotent stem cells, iPS) 6
四、研究動機與目的 10
二、材料與方法 12
2-1-1 細胞株 12
2-2-1 質體建構 13
2-2-2 插入 (Insert) DNA 的純化 16
2-2-3 載體 (Vector) DNA 的純化 16
2-2-4接合反應 ( Ligation ) 17
2-2-5 大腸桿菌的轉型作用 (Transformation) 17
2-3 RT-PCR 17
2-4- 西方墨點實驗 (Western blot) 19
2-4-2 免疫染色 (Immunohistochemistry) 20
2-4-3 Transient promoter assay 啟動子轉染分析 21
2-4-4 Real-time PCR 22
2-4-5 藥物配置 22
三、實驗結果 23
3-1 觀察 C2C12-Retro-Py-GFP 及 C2C12-Oct4-Py-Nanog-Sox2 穩定細胞株內,經 VPA 處理後其相關基因改變情形 23
3-2 VPA 抑制 C2C12-Retro-Py-GFP 及 C2C12 的分化 24
3-3 VPA 於 C2C12 分化不同時期對其分化的影響 25
3-4 Oct4 19k promoter 於老鼠胚胎癌細胞 (P19E) 及老鼠肌纖維母細胞 (C2C12) 中,經 VPA 處理後是否會增強其活性 25
3-5 處理其它 Histone deacetylase (HDAC) inhibitor,觀察這些抑制劑是否與 VPA 同樣具有活化 Oct4 promoter 的效果 26
3-6 觀察 VPA 作用於其它 promoter 的反應 28
3-7 VPA 是否也能影響尚未嵌入染色體中的 Oct4 promoter 28
3-8 探討 VPA 作用於 Oct4 promoter 的位置 29
3-9 Hormone response element (HRE) 是否在 VPA 增強 Oct4 轉錄活性機制中,為主要的影響位置 30
3-10 Nuclear hormone receptor SF1、TR2 及 RAR 是否參與 VPA 增強 Oct4 轉錄活性的機制中 31
3-11 Nuclear hormone receptors 在 ES cell、P19、STO 及 C2C12中的表現量 32
四、 實驗討論 34
4-1 VPA 與 Oct4 之間的關係 34
4-2 VPA 影響肌肉分化的情形 35
4-3 VPA 作用在 Oct4 promoter的位置 36
五、參考文獻 39
六、圖表 44
圖一、 C2C12-Retro-Py-GFP 及 C2C12-Oct4-Py-Nanog-Sox2 經 VPA 處理後其幹細胞及肌肉分化相關基因表現情形 45
圖二、細胞經處理VPA 後,其肌肉分化情形 46
圖三、細胞經處理VPA 不同時間後,其肌肉分化情形 47
圖四、 P19E 穩定表現 Oct4 promoter 細胞株對 VPA 及 RA 的反應 48
圖五、 P19E 及 C2C12 處理 VPA、TSA 及 NAM 三種不同的 Histone deacetylase (HDAC) inhibitor 後,乙醯化 H3 及 H4 蛋白質表現量差異 49
圖六、 C2C12 經高濃度 TSA 處理後其 Oct4 promoter 的反應 50
圖七、 VPA 於 C2C12 細胞中對 Pax7 50k 及 N-cadherin-42k promoter 的影響 51
圖八、 C2C12 經 transient transfection 方式於細胞內表達 pStable-Oct4 19k promoter 對 VPA 的反應,以及 RAR? 影響 VPA 對 Oct4 promoter 的效果 53
圖九、 VPA 對於不同長度 Oct4 promoter 的影響 55
圖十、 HRE 不同的 mutant type 對 VPA 的反應 57
圖十一、觀察 VPA 活化 Oct4 promoter 是否受到nuclear hormone receptor SF1、TR2 及 RAR? 的影響 59
圖十二、ES cell、P19、STO 及 C2C12 中 orphan nuclear receptros 的表現量 60
圖十三、 以Q-PCR 偵測 ES cell、P19、STO 及 C2C12 中 orphan nuclear receptros 的表現量 61
附錄一 62
圖一、C2C12-Oct4-19 k-Luc 穩定細胞株對不同 HDAC inhibitors 62
以及 VPA 和 RA 的 promoter 活性 62
圖二、P19-Oct4-19 k-luc-poly 及 C2C12-Oct4-19 k-luc clone #5 對不同的 HDAC inhibitors 及 DNA demethylation agent 的 promoter 活性 63
附錄二 64
1 Primer 對照表 64
2 HDAC 抑制劑及 BIX-01294 結構圖 66
3縮寫與全名對照表 67
4溶劑及試劑配方 68
參考文獻 Carey, B.W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M., and Jaenisch, R. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106, 157-162.
Cavaleri, F., and Scholer, H.R. (2003). Nanog: a new recruit to the embryonic stem cell orchestra. Cell 113, 551-552.
Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655.
Chen, L., and Liu, L. (2009). Current progress and prospects of induced pluripotent stem cells. Sci China C Life Sci 52, 622-636.
Chen, T., Yuan, D., Wei, B., Jiang, J., Kang, J., Ling, K., Gu, Y., Li, J., Xiao, L., and Pei, G. (2010). E-cadherin-Mediated Cell-Cell Contact is Critical for Induced Pluripotent Stem Cell Generation. Stem Cells.
Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369-1373.
Dejosez, M., Krumenacker, J.S., Zitur, L.J., Passeri, M., Chu, L.F., Songyang, Z., Thomson, J.A., and Zwaka, T.P. (2008). Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 1162-1174.
Eminli, S., Utikal, J., Arnold, K., Jaenisch, R., and Hochedlinger, K. (2008). Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26, 2467-2474.
Feng, B., Jiang, J., Kraus, P., Ng, J.H., Heng, J.C., Chan, Y.S., Yaw, L.P., Zhang, W., Loh, Y.H., Han, J., et al. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11, 197-203.
Fuhrmann, G., Chung, A.C., Jackson, K.J., Hummelke, G., Baniahmad, A., Sutter, J., Sylvester, I., Scholer, H.R., and Cooney, A.J. (2001). Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev Cell 1, 377-387.
Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20, 6969-6978.
Gupta, P., Ho, P.C., Huq, M.M., Ha, S.G., Park, S.W., Khan, A.A., Tsai, N.P., and Wei, L.N. (2008). Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proc Natl Acad Sci U S A 105, 11424-11429.
Gurpur, P.B., Liu, J., Burkin, D.J., and Kaufman, S.J. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. Am J Pathol 174, 999-1008.
He, S., Nakada, D., and Morrison, S.J. (2009). Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25, 377-406.
Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, 1269-1275.
Jaenisch, R., and Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582.
Jung, G.A., Yoon, J.Y., Moon, B.S., Yang, D.H., Kim, H.Y., Lee, S.H., Bryja, V., Arenas, E., and Choi, K.Y. (2008). Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol 9, 66.
Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771-775.
Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Arauzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646-650.
Kubicek, S., O'Sullivan, R.J., August, E.M., Hickey, E.R., Zhang, Q., Teodoro, M.L., Rea, S., Mechtler, K., Kowalski, J.A., Homon, C.A., et al. (2007). Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25, 473-481.
Lang, K.C., Lin, I.H., Teng, H.F., Huang, Y.C., Li, C.L., Tang, K.T., and Chen, S.L. (2009). Simultaneous overexpression of Oct4 and Nanog abrogates terminal myogenesis. Am J Physiol Cell Physiol 297, C43-54.
Meyer, N., and Penn, L.Z. (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8, 976-990.
Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642.
Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101-106.
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391.
Niwa, H. (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26, 137-148.
Niwa, H. (2007). How is pluripotency determined and maintained? Development 134, 635-646.
Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461-472.
Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317.
Pan, G.J., Chang, Z.Y., Scholer, H.R., and Pei, D. (2002). Stem cell pluripotency and transcription factor Oct4. Cell Res 12, 321-329.
Pan, T., Li, X., Xie, W., Jankovic, J., and Le, W. (2005). Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS Lett 579, 6716-6720.
Pikarsky, E., Sharir, H., Ben-Shushan, E., and Bergman, Y. (1994a). Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Mol Cell Biol 14, 1026-1038.
Pikarsky, E., Sharir, H., Ben-Shushan, E., and Bergman, Y. (1994b). Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Mol Cell Biol 14, 1026-1038.
Ralston, A., and Rossant, J. (2005). Genetic regulation of stem cell origins in the mouse embryo. Clinical Genetics 68, 106-112.
Rosner, M.H., Vigano, M.A., Ozato, K., Timmons, P.M., Poirier, F., Rigby, P.W., and Staudt, L.M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686-692.
Rowland, B.D., and Peeper, D.S. (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6, 11-23.
Scholer, H.R., Ruppert, S., Suzuki, N., Chowdhury, K., and Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435-439.
Schoorlemmer, J., van Puijenbroek, A., van Den Eijnden, M., Jonk, L., Pals, C., and Kruijer, W. (1994). Characterization of a negative retinoic acid response element in the murine Oct4 promoter. Mol Cell Biol 14, 1122-1136.
Shan, S.W., Tang, M.K., Chow, P.H., Maroto, M., Cai, D.Q., and Lee, K.K. (2007). Induction of growth arrest and polycomb gene expression by reversine allows C2C12 cells to be reprogrammed to various differentiated cell types. Proteomics 7, 4303-4316.
Smith, K.P., Luong, M.X., and Stein, G.S. (2009). Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 220, 21-29.
Sommer, C.A., Stadtfeld, M., Murphy, G.J., Hochedlinger, K., Kotton, D.N., and Mostoslavsky, G. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27, 543-549.
Stimson, L., Wood, V., Khan, O., Fotheringham, S., and La Thangue, N.B. (2009). HDAC inhibitor-based therapies and haematological malignancy. Ann Oncol 20, 1293-1302.
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., and Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11, 1553-1558.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.
Wernig, M., Meissner, A., Cassady, J.P., and Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10-12.
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813.
Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766-770.
Yang, H.M., Do, H.J., Kim, D.K., Park, J.K., Chang, W.K., Chung, H.M., Choi, S.Y., and Kim, J.H. (2007). Transcriptional regulation of human Oct4 by steroidogenic factor-1. J Cell Biochem 101, 1198-1209.
Ying, Q.L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281-292.
Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519-523.
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920.
Zhou, H., Wu, S., Joo, J.Y., Zhu, S., Han, D.W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381-384.
指導教授 陳盛良(Shen-liang Chen) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明