博碩士論文 972204029 詳細資訊


姓名 郭家誠(Jia-Cheng Kuo)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 建構生質柴油的研發平台
(Development of a platform for biodiesel production)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生質柴油是一種新興的替代能源,能夠取代石化柴油的燃料,其原料可來自含有高含量三酸甘油脂的植物油或廢棄生物質,藉由轉酯化反應產生單烷基酯長鏈脂肪酸與短鏈醇,如脂肪酸甲基酯。在最近幾年應用基因工程微藻生產生質柴油受到許多注目。脂肪酸合成是先將acetyl-CoA轉變成malonyl-CoA,這個反應由acetyl-CoA carboxylase (ACCase)的催化。因此ACCase往往被視為脂肪酸合成途徑中的關鍵酵素。根據這論點,我們希望增加ACCase的表現以達到增加細胞內脂質的含量,進一部增加生質柴油的量產。藍綠菌 (Synechocystis sp. PCC 6803)屬於藍綠菌的一種,因為其易於培養的生長特性,成為生質能源的首選。然而,現今沒有適用於藍綠藻的穿梭載體可用;因此本論文主要包括兩大方向:(1) 構築ACCase至表現載體中。(2) 設計和建構大腸桿菌與藍綠菌適合的穿梭載體,以利將來用於基因選殖和功能分析。研究結果顯示在大量表現ACCase時,細胞的脂質組成有所改變,改變的差異可以當作是否採用增加細胞ACCase來增加細胞內的脂質作為生質柴油研發的策略。而穿梭載體部分,我們將構築好的穿梭載體送入藍綠菌中,觀察穿梭載體是否能保留在菌體內,同時我們也測試出藍綠菌對ampicillin耐受性。
摘要(英) Biodiesel is an alternative energy source and a substitute for petrochemical diesel fuels. Transferification of triacylglycerols from plant oil or waste biomass yields monoalky esters of long-chain fatty acids with short chain alcohol such as fatty acid methyl esters. More attention has recently focused on the application of genetically engineered microalgae in the production of biodiesel. The reaction of acetyl-CoA to malonly-CoA is catalyzed by acetyl-CoA carboxylase (ACCase). ACCase is often regarded as the first committed step of the fatty acid synthetic pathway. My aim is to increase the lipid content of the cell through enhancing the expression of ACCase. Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) is one of the best-characterized microalgae species and, given its robust growth characteristic, becomes the organism of choice for applications. Detailed studies on techniques for genetic manipulation of this species are available. Unfortunately, no suitable vector for cyanobacteria is courrently available. Therefore, the thesis has two main aims: (1) cloning ACCase on expression vector. (2) constructing a E.coli / Synechocystis suitable shuttle vector for efficient gene cloning and functional assays. My results show that overexpression of ACCase increases the lipid content of the cells. In addition, the shuttle vector constructed was transformed into Synechocystis for testing. As it turned out, it conferred antibiotic resistance to the cell and could be recovered as a plasmid form.
關鍵字(中) ★ 生質柴油 關鍵字(英) ★ biodiesel
論文目次 中文摘要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖 目 錄 vii
表 目 錄 viii
第一章 緒論 1
1.1 生質能源的簡介 1
1.1.1 何謂生質能源 1
1.1.2 生質能源的演進 2
1.2 生質柴油的簡介 3
1.2.1 生質柴油的介紹 3
1.1.2 生質柴油的製程 4
1.3 Acetyl-CoA carboxylase (ACCase)的簡介 6
1.3.1 ACCase的生化特性 6
1.3.2原核ACCase的介紹 7
1.3.3真核 ACCase的介紹 8
1.4藍綠菌Synechocystis sp. PCC 6803的簡介 10
1.5 實驗目的 12
第二章 材料與方法 14
2.1菌株、載體及培養基 14
2.2大腸桿菌勝任細胞的製備與轉型作用 15
2.2.1大腸桿菌勝任細胞的製備 16
2.2.2大腸桿菌勝任細胞的轉型作用 17
2.3酵母菌勝任細胞的製備與轉型作用 17
2.3.1酵母菌勝任細胞的製備 17
2.3.2酵母菌勝任細胞的轉型作用 18
2.5建構穿梭載體 19
2.6質體之選殖 20
2.7蛋白質製備 21
2.8 SDS-PAGE之蛋白質分子量分析 22
2.9西方點墨法 22
2.10細胞內脂質的測定 24
第三章 結果 25
3.1測試穿梭載體的功能 25
3.2 ACCase的表現 27
3.3 ACCase送入細胞後,胞內脂質含量的改變 28
第四章 討論 30
參考文獻 33
參考文獻 Al-Feel, W., Chirala, S.S., and Wakil, S.J. (1992). Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc Natl Acad Sci U S A 89, 4534-4538.
Angermayr, S.A., Hellingwerf, K.J., Lindblad, P., and de Mattos, M.J. (2009). Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20, 257-263.
Aurora, R., Hihara, Y., Singh, A.K., and Pakrasi, H.B. (2007). A network of genes regulated by light in cyanobacteria. OMICS 11, 166-185.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Adv 25, 294-306.
Chiu, Y.F., Lin, W.C., Wu, C.M., Chen, Y.H., Hung, C.H., Ke, S.C., and Chu, H.A. (2009). Identification and characterization of a cytochrome b559 Synechocystis 6803 mutant spontaneously generated from DCMU-inhibited photoheterotrophical growth conditions. Biochim Biophys Acta 1787, 1179-1188.
Chu, H.A., Nguyen, A.P., and Debus, R.J. (1994). Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochemistry 33, 6137-6149.
Cronan, J.E., Jr., and Waldrop, G.L. (2002). Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41, 407-435.
Davis, M.S., Solbiati, J., and Cronan, J.E., Jr. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275, 28593-28598.
Dzelzkalns, V.A., and Bogorad, L. (1986). Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation. J Bacteriol 165, 964-971.
Eaton-Rye, J.J. (2004). The construction of gene knockouts in the cyanobacterium Synechocystis sp. PCC 6803. Methods Mol Biol 274, 309-324.
Gill, R.T., Katsoulakis, E., Schmitt, W., Taroncher-Oldenburg, G., Misra, J., and Stephanopoulos, G. (2002). Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J Bacteriol 184, 3671-3681.
Guchhait, R.B., Polakis, S.E., Dimroth, P., Stoll, E., Moss, J., and Lane, M.D. (1974). Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249, 6633-6645.
Hasslacher, M., Ivessa, A.S., Paltauf, F., and Kohlwein, S.D. (1993). Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268, 10946-10952.
Herrero, A., Muro-Pastor, A.M., and Flores, E. (2001). Nitrogen control in cyanobacteria. J Bacteriol 183, 411-425.
Hubschmann, T., Yamamoto, H., Gieler, T., Murata, N., and Borner, T. (2005). Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. FEBS Lett 579, 1613-1618.
Ikeuchi, M., and Tabata, S. (2001). Synechocystis sp. PCC 6803 - a useful tool in the study of the genetics of cyanobacteria. Photosynth Res 70, 73-83.
Imamura, S., Tanaka, K., Shirai, M., and Asayama, M. (2006). Growth phase-dependent activation of nitrogen-related genes by a control network of group 1 and group 2 sigma factors in a cyanobacterium. J Biol Chem 281, 2668-2675.
Jitka Kruinská (2007). Construction of expression vector for cyanobacterium Synechocystis sp. PCC 6803. University of South Bohemia, Bachelor thesis.
Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., et al. (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109-136.
Kaneko, T., and Tabata, S. (1997). Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38, 1171-1176.
Kim, K.H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr 17, 77-99.
Knowles, J.R. (1989). The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58, 195-221.
Koksharova, O.A., and Wolk, C.P. (2002). Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58, 123-137.
Korbitz W. (1996). Biodiesel production in Europe and North America. An encouraging prospect. Renew Energy 16, 1078–83.
Kufryk, G.I., Sachet, M., Schmetterer, G., and Vermaas, W.F. (2002). Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol Lett 206, 215-219.
Kufryk, G.I., and Vermaas, W.F. (2003). Slr2013 is a novel protein regulating functional assembly of photosystem II in Synechocystis sp. strain PCC 6803. J Bacteriol 185, 6615-6623.
Kuhlemeier, C.J., Hardon, E.M., van Arkel, G.A., and van de Vate, C. (1985). Self-cloning in the cyanobacterium Anacystis nidulans R2: fate of a cloned gene after reintroduction. Plasmid 14, 200-208.
Lapinskiene, A., Martinkus, P., and Rebzdaite, V. (2006). Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ Pollut 142, 432-437.
Montgomery, B.L. (2007). Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Mol Microbiol 64, 16-27.
Munday, M.R., and Hemingway, C.J. (1999). The regulation of acetyl-CoA carboxylase--a potential target for the action of hypolipidemic agents. Adv Enzyme Regul 39, 205-234.
Muro-Pastor, A.M., Herrero, A., and Flores, E. (2001). Nitrogen-regulated group 2 sigma factor from Synechocystis sp. strain PCC 6803 involved in survival under nitrogen stress. J Bacteriol 183, 1090-1095.
Nakamura, Y., Kaneko, T., and Tabata, S. (2000). CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Res 28, 72.
Nakasugi, K., Svenson, C.J., and Neilan, B.A. (2006). The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 152, 3623-3631.
Osanai, T., Imamura, S., Asayama, M., Shirai, M., Suzuki, I., Murata, N., and Tanaka, K. (2006). Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 13, 185-195.
Osanai, T., Kanesaki, Y., Nakano, T., Takahashi, H., Asayama, M., Shirai, M., Kanehisa, M., Suzuki, I., Murata, N., and Tanaka, K. (2005). Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE. J Biol Chem 280, 30653-30659.
Ranganathan, S.V., Narasimhan, S.L., and Muthukumar, K. (2008). An overview of enzymatic production of biodiesel. Bioresour Technol 99, 3975-3981.
Rippka, R., J. Deruelles, J. Waterbury, M. Herdman and R. Stanier. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61
Tong, L. (2005). Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62, 1784-1803.
US National Biodiesel Board (2008).http://www.biodiesel.org/pdf_files/fuelfactsheets/BDSpec.pdf
Van der Plas, J., Hegeman, H., de Vrieze, G., Tuyl, M., Borrias, M., and Weisbeek, P. (1990). Genomic integration system based on pBR322 sequences for the cyanobacterium Synechococcus sp. PCC7942: transfer of genes encoding plastocyanin and ferredoxin. Gene 95, 39-48.
Vermaas, W.F., Williams, J.G., Rutherford, A.W., Mathis, P., and Arntzen, C.J. (1986). Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47. Proc Natl Acad Sci U S A 83, 9474-9477.
Wada, H., Gombos, Z., and Murata, N. (1990). Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347, 200-203.
Wakil, S.J., Stoops, J.K., and Joshi, V.C. (1983). Fatty acid synthesis and its regulation. Annu Rev Biochem 52, 537-579.
Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M. (2001). Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42, 63-73.
指導教授 王健家(Chien-Chia Wang) 審核日期 2010-6-28

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡