博碩士論文 972205014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:44.192.253.106
姓名 葉秋梅(Chiu-mei Yeh)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究
(Joint modeling of longitudinal and survival data-A case study in the liver cirrhosis patients)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究
★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究★ 半母數擴充風險模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上,最常使用Cox比例風險模型來描述長期追蹤(時間相依)共變數與存活時間之間的關係。然而,卻遭遇到長期追蹤測量值並非固定時間測量以及測量誤差存在的問題,另外, 資料缺失(informative missing)也是在參數估計中造成偏誤(bias)重要的原因之一。因此,在本篇文章當中我們使用聯合模型(joint model)來解決此問題。我們使用線性隨機效應模型(linear random effect model)來描述長期追蹤資料,並根據概似比檢定的方法來判斷長期追蹤模型的適合度;另外,使用Cox比例風險模型來描述共變數與存活時間之間的關係,在參數的估計方面,結合這兩個部份建立聯合概似函數利用EM演算法(expectation maximization algorithm)做參數之估計。我們主要利用凝血酶原指標(Prothrombin index)來評估肝硬化的嚴重程度,並進一步探討強體松藥物對於肝硬化病患其治療的療效,並且觀察凝血酶原指標、年齡以及性別對於存活時間之間的相關性。本研究主要是著重在圖形法和聯合模型來對資料做分析。
摘要(英) Typically, the Cox model is the most popular model to describe the relationship between longitudinal covariates(time-dependent) and the survival time. However, to model the survival time with longitudinal covariates may encounter difficulties when the longitudinal measurement are scattered sparsely and contain measurement errors. There is an additional complexity when the longitudinal process can not be observed due to the event time(death or endpoint), which results in informatively missing data. Therefore, in this study, we applied the joint model to overcome these difficulties. We propose a linear random effects model for longitudinal process, and use the likelihood ratio test to choose a proper longitudinal model. The Cox proportion hazards model then used to link the longitudinal biomarkers and event time, and use the EM algorithm to search for the maximum likelihood estimates. We used the prothrombin index to appraise liver cirrhosis progression, and investigated the prothrombin index, age, sex, and their relationship with survival time. Both graphic techniques and joint model approach were used to explore their relationship.
關鍵字(中) ★ Cox比例風險模型
★ EM演算法
★ 聯合模型
★ 概似比檢定
★ 長期追蹤資料
關鍵字(英) ★ Cox PH model
★ EM algorithm
★ Joint model
★ Likelihood ratio test
★ Longitudinal data
論文目次 摘要.....................i
Abstract.....................ii
誌謝詞.....................iii
目錄.....................iv
圖目錄.....................vi
表目錄.....................vii
第一章 緒論.....................1
1.1 資料背景.....................1
1.1.1 疾病介紹.....................1
1.1.2 病因.....................2
1.1.3 診斷指標.....................4
1.1.4 治療.....................6
1.2 研究背景.....................7
1.3 研究動機與目的.....................13
第二章 統計方法.....................14
2.1 圖形法.....................15
2.1.1 輪廓圖.....................15
2.1.2 事件歷史圖.....................16
2.1.3 三維平滑曲面圖以及等高圖.....................17
2.2 聯合模型.....................18
2.2.1 長期追蹤模型.....................19
2.2.2 存活模型.....................21
2.2.3 聯合概似函數.....................22
2.2.4 EM 演算法.....................24
2.2.5 參數估計之過程.....................28
2.2.6 參數標準差之估計.....................29
第三章 實例分析.....................31
3.1 資料背景.....................31
3.2 圖形法.....................33
3.2.1 輪廓圖.....................33
3.2.2 事件歷史圖.....................37
3.2.3 三維平滑曲面圖以及等高圖.....................44
3.2.4 圖形法總結.....................48
3.3 Kaplan-Meier法.....................51
3.4 模型配適.....................55
3.4.1 Cox 比例風險模型.....................55
3.4.2 聯合模型.....................58
第四章 結論與討論.....................68
參考文獻.....................72
參考文獻 [1] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
[2] Brown, E. R., Ibrahim, J. G. and DeGruttola, V. (2005). A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival. Biometrics, 61, 64-73.
[3] Ciampi, A. and Etezadi-Amoli, J. (1985). A general model for testing the proportional hazards and the accelerated failure time hypothesis in the analysis of censored survival data with covariate. Communications in Statistics, 14, 651-667.
[4] Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society, 34, 187-220.
[5] Cox, D. R. (1975). Partial likelihood. Biometrika, 62, 269-276.
[6] Dafini, U. G. and Tsiatis, A. A. (1998). Evaluating surrogate markers of clinical outcome measured with error. Biometrics, 54, 1445-1462.
[7] Ding, J. and Wang, J. L. (2008). Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data. Biometrics, 64, 546-556.
[8] Dubin, J. A., M¨uller, H. G. and Wang, J. L. (2001). Event history graphs for censored survival data. Statistics In Medicine, 20, 2951-2964.
[9] Efron, B. (1994). Missing data, imputation and bootstrap (with Discussion). Journal of the American Statistical Association, 89, 463-479.
[10] Efron, B., Tibshirani, R. J. (1993). An introduction to the Bootstrap. Chapman & Hall, New York.
[11] Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modeling of longitudinal measurements and event time data. Biostatistics, 4, 465-480.
[12] Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint Modeling of Survival and Longitudinal Data:Likelihood Approach Revisited. Biometrics, 62, 1037-1043.
[13] Kaplan, E. L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53, 457-481.
[14] Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitulongitudinaldata. Biometrics, 38, 963-974.
[15] Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in failure time regression model. Biometrika, 69, 331-342.
[16] Rosner, B. (2006). Fundamentals of Biostatistics, Sixth Edition. Duxbury Press, Belmont.
[17] Schlichting, P., Christensen, E., Andersen, P., Fauerholds, L., Juhl, E., Poulsen, H. and Tygstrup, N. (1983). The Copenhagen Study Group for Liver Diseases. Hepatology, 3, 889-895.
[18] Song, X., Davidian, M. and Tsiatis, A. A. (2002). A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data. Biometrics, 58, 742-753.
[19] Tseng, Y. K., Hsieh F. and Wang, J. L. (2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika, 92, 587-603.
[20] Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika, 88, 446-458.
[21] Tsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Time-to-Event Data: An Overview. Statistica Sinica, 14, 809-834.
[22] Tsiatis, A. A., DeGruttola, V. andWulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association, 90, 27-37.
[23] Wang, Y. and Taylor, J. M. G. (2001). Jointly Modeling Longitudinal and Event Time Data With Application to Acquired Immunodeficiency Syndrome. Journal of the American Statistical Association, 96, 895-905.
[24] Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330-339.
[25] Yu, M., Law, N. J., Taylor, J. M. G. and Sandler, H. M. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica, 14, 835-862.
[26] Zeng, D. and Cai, J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. The annals of Statistics, 33(5), 2132-2163.
指導教授 曾議寬(Yi-kuan Tseng) 審核日期 2010-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明