博碩士論文 972206002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.223.159.195
姓名 陳進達(Chin-Ta Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
(4-Channel×10-Gbps Optical Interconnect Receiving Module Based on Silicon Optical Bench )
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究
★ 具45度反射面之非共平面轉折波導光路★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端
★ 具三維光路之光連接發射端模組★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組
★ 建立於矽基光學平台之高分子聚合物波導光路★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製
★ 發光二極體色溫控制技術及其於色序式微型投影機之應用★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模
★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文中,將提出具矽基光學平台(Silicon Optical Bench, SiOB )之微型化被動式對準光連結接收端模組,模組傳輸速度分別為4通道 × 5-Gbps與4通道 × 10-Gbps兩種,前者所對應為之光檢測器波長為1310 nm,後者所對應之光檢測器波長為850 nm,模組尺寸大小為5 × 5 mm2,此模組可應用於板對板(Board to Board)或晶片對晶片(Chip to Chip)之光學連接,矽基光連結接收端模組具有單石積體化45度微反射面、V型溝槽陣列、10-GHz高頻傳輸線、金錫焊料與高反射率金屬層,並利用混成構裝之技術將光檢測器與八芯光纖陣列以被動式對準封裝整合;45度微反射面提供光線非共平面傳輸,其表面粗糙度小於10 nm,蝕刻深度為110 um,V型溝槽陣列提供光纖擺放平台,矽基光學平台製程誤差為6 %以內;在模組光學特性上,850模組與1310模組之1-dB光學準位容忍度分別為±16與±20 um,響應度分別為0.5與0.7 A/W,鄰近通道之串音雜訊均在-25 dB以下;在模組高頻特性上,850模組之眼圖可通過OC-192眼罩(Eye Mask),而1310模組之眼圖通過OC-96眼罩,且誤碼率(Bit Error Rate, BER)皆可達到10-11等級。
摘要(英) In this thesis, the compact and passive-alignment optical interconnect receiving module based on silicon optical bench (SiOB) is realized. The transmission speed of receiving modules are 4-channel × 5-Gbps and 4-channel × 10-Gbps, the former is corresponded to photo-detector (PD) which wavelength is 1310 nm, the later is corresponded to PD which wavelength is 850 nm. The size of module is 5 × 5 mm2. The receiving module can apply optical interconnect of board to board or chip to chip. The silicon-based optical interconnect receiving module includes a monolithic integration of 45° micro-reflector, V-groove arrays, high-frequency transmission lines of 10 GHz, bonding pads with Au/Sn eutectic solder and metal layer with high reflection coating (HR coating),using hybrid integration of PD and fibber array of 8 channels with passive alignment process. The 45° micro-reflector provides non-coplanar transmission, which surface roughness is less than 10 nm, etching depth is 110 um, V-groove arrays provide bench of setting fiber, the tolerance accuracy of fabrication process for SiOB is less than 6 %. The optical characteristic with receiving module, 1-dB tolerance of optical level of 850-nm and 1310-nm module are ±16 and ±20 um, respectively, responsivity are 0.5 and 0.7 A/W, respectively, the cross-talk between neighboring channels can be less than -25 dB. The frequency characteristic with receiving module, The eye pattern of 850-nm module and 1310-nm module can pass OC-192 and OC-96 eye mask, respectively. The bit error rate (BER) of them can achieve 10-11 order.
關鍵字(中) ★ 光連結 關鍵字(英) ★ optical interconnect
論文目次 摘要 i
Abstract ii
圖目錄 v
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 具矽基光學平台之光學連結接收端模組架構 9
第二章 微型化被動式對準之光連結接收端模組設計 10
2-1 850與1310 nm光檢測器之光學評估 10
2-2 接收端模組之光學訊號準位及串音雜訊準位之模擬分析 16
2-3 接收端模組結構與設計 22
第三章 光連結接收端模組製程開發與封裝 24
3-1 矽基光學平台之製程與開發 28
3-2 金屬製程與矽基光學平台之整合 34
3-2-1 45度微反射面之高反射率金屬層製程 34
3-2-2 10-GHz 高頻傳輸線之設計與製程開發 37
3-2-3 覆晶封裝之金錫合金焊料製程 49
3-3 封裝製程與矽基光學平台之整合 54
3-3-1 光檢測器元件之覆晶封裝製程 54
3-3-2 八芯多模光纖之封裝製程 56
第四章 矽基光連結接收端模組之高頻特性量測分析 59
4-1 10-GHz高頻傳輸線之高頻傳輸特性量測 59
4-2 光連結接收端模組眼圖與誤碼率之高頻特性量測 64
第五章 結論 72
參考文獻 76
參考文獻 [1] N. Savage, “Linking with light,” IEEE Spectr. vol. 39, no. 8, pp. 32–36, 2002.
[2] Intel’s official website: http://techresearch.intel.com/articles/None/1813.htm
[3] T. Hino, R. Kuribayashi, Y. Hashimoto, T. Sugimoto, J. Ushioda, J. Sasaki, I. Ogura, I. Hatakeyama, and K. Kurata, “A 10 Gbps x 12 channel pluggable optical transceiver for high-speed interconnections,” in IEEE Electronic Components and Technology Conference, pp. 1838–1843, 2008.
[4] A. Barkai, Y. Chetrit, O. Cohen, R. Cohen, N. Elek, E. Ginsburg, S. Litski, A. Michaeli, O. Raday, D. Rubin, G. Sarid, N. Izhaky, M. Morse, O. Dosunmu, A. Liu, L. Liao, H. Rong, Y. Kuo, S. Xu, D. Alduino, J. Tseng, H. Liu, and M. Paniccia, “Integrated silicon photonics for optical networks,” OSA J. Opt. Netw., vol. 6, no. 1, pp. 25–47, 2007.
[5] I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators, A, 84(1), 116-125 (2000).
[6] H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, M. L. Wu, “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, 17(23), 20938-20944 (2009).
[7] B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22(9), 2043-2054 (2004).
[8] S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron., 24(2), 927-934 (2006).
[9] M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express, 14(15), 6823-6836 (2006).
[10] X. Wang and R. T. Chen, “Fully embedded board level optical interconnects—From point-to-point interconnection to optical bus architecture,” Proc. SPIE, 6899, 6899031-6899039 (2008).
[11] R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26(14), 2136-2141 (2008).
[12] P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9(2), 624-635 (2003).
[13] H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21(2), 147-156 (1998).
[14] H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron., 9(2), 443-451 (2003).
[15] D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett., vol.18, no.16, pp. 1738-1740, Aug. 2006.
[16] Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol., 21(1), 275-280 (2003).
[17] B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol., 22(9), 2128-2134 (2004).
[18] F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17(13), 10514-10521 (2009).
[19] Hsu-Liang Hsiao, Hsiao-Chin Lan, Chia-Chi Chang, Chia-Yu Lee, Siou-Ping Chen, Chih-Hung Hsu, Shuo-Fu Chang, Yo-Shen Lin, Feng-Ming Kuo, Jin-Wei Shi, and Mount-Learn Wu, “Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors” Optics Express, Vol. 17, Issue 26, pp. 24250-24260 (2009)
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2010-5-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明