博碩士論文 972206005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.207.238.169
姓名 賴映佑(Ying-Yu Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究
(Active linewidth control of an Optical Parametric Oscillator in a monolithically cascaded PPLN wavelength converter and APLN Electro-Optic Polarization Mode Converter)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究
★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究★ 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 窄頻且波長可調的同調光源在光譜學、遙測及光通訊上有著相當多的應用。以光通訊為例,在光通訊中經常需要利用光學濾波器處理特定頻譜的訊號。為了能達到更有彈性的頻譜調制效果,主動式的窄頻濾波器在光通訊系統中往往會較被動式的元件來的功能強大且實用。在先前的研究中已經有實驗團隊利用非週期性極化反轉鈮酸鋰多重相位匹配的特性成功達到多波長的主動式電光濾波器。
光參量振盪器(OPO)是一種三光子的非線性波長轉換系統,可以將ㄧ個較高頻的光子轉成兩個較低頻的光子。相較於大家熟知倍頻波長轉換過程,其最大的優點是具有波長可調的特性,常被用在產生大範圍波長可調的固態同調光源,若使用準相位匹配技術製作週期性極化反轉鈮酸鋰來達成光參量振盪器,便可以和上段所述之非週期性極化反轉鈮酸鋰電光濾波器搭配使用,利用非週期性極化反轉鈮酸鋰電光濾波器來控制週期性極化反轉鈮酸鋰光參量振盪器頻譜達到窄頻波長可調光源輸出的效果。
在本論文中我們成功利用串級式週期性與非週期性極化反轉鈮酸鋰(PPLN/APLN)將光參量振盪器和電光模態轉換器結合在同一塊晶片上實現了光通訊波段的主動式積體化單晶片波長可調窄頻雷射元件,此元件不僅可以達到窄頻的單波長可調光源,也可以透過不同的設計達到雙波長輸出的窄頻光源。
於第一章,將會簡介研究動機與背景。於第二章,將會說明週期性與非週期性電光準相位匹配之理論與工作原理。於第三章,將會詳細論述如何設計及製作串級式週期性與非週期性極化反轉鈮酸鋰晶片。於第四章,利用實驗論證利用一串級式週期性與非週期性極化反轉鈮酸鋰晶片的確可以實現光通訊波段主動式波長可調窄頻光源,並和林昭弘博士的三段串級式週期性極化反轉鈮酸鋰晶片的架構作比較。於第五章,提出此研究工作的總結與未來展望。
摘要(英) Narrow-line, wavelength tunable coherent radiations are demanded for various applications including spectroscopy, remote sensing , and
communication .Take optical communication for example, optical filter is usually used in control specific signal. To approach more flexible spectra modulation, active spectra-narrowed filter would be more powerful than passive one. In previous research, some groups had successfully used the multi-phase matching property of APLN to demonstrate active multi-wavelength electro-optical filter.
Optical parametric oscillator is a three-photon nonlinear wavelength conversion system, it can convert a high frequency photon into two low frequency photons. Compared to second harmonic generation, the advantage of OPO is wavelength tunability, can be used in widely tunable solid state coherent radiation.By use of the technique of quasi-phase matching (QPM) to fabricate the OPO device, it can co-operate with APLN electro-optical filter. Then narrowed linewidth tunable radiation could be approach by APLN electro-optical filter.
In this thesis, we successfully demonstrate first active monolithically tunable laser device by integrate PPLN OPG and APLN EO PMC in a single chip. This device could not only approach single wavelength narrow-linewidth tunable radiation, but also generate dual wavelength narrow-linewidth radiation by another design.
The introduction of motivation and background would be given in chapter 1. In chapter 2, the QPM theory and working principle of PPLN OPO and APLN EO PMC would be given. Chapter 3 would discuss how to design and fabricate cascaded PPLN and APLN. In chapter 4, the experiment result would prove that PPLN/APLN cascading chip can really demonstrate a narrow-line actively tunable light source at optical communication band. In chapter5, we’ll report the outlook and summary of this work.
關鍵字(中) ★ 準相位匹配 關鍵字(英) ★ QPM
論文目次 第一章緒論…………………..…………………………………………1
1.1 簡介...................................................................................... 1
1.2 研究動機................................................................................ 3
1.3 內容概要............................................................................ 11
第二章 理論 ......................................................................................... 12
2.1 準相位匹配原理............................................................... .12
2.2 光參量過程理論…………………………………………...16
2.2.1 光參量過程簡介……………………………………16
2.2.2 光參量產生理論推導………………………………17
2.3 週期性反轉之鈮酸鋰晶體的電光效應............................ 18
2.3.1電光模態轉換器簡介………………………………..18
2.3.2模態轉換器理論……………………………………..19
2.3.3鈮酸鋰之電光效應…………………………………..22
2.3.4 以週期性極化反轉鈮酸鋰製作電光模態轉換器…26
2.4 非週期性極化反轉鈮酸鋰電光模態轉換器...................... 29
第三章 元件設計、模擬以及製程部份............................................. 33
3.1 元件設計-模擬退火法....................................................... 33
3.1.1 簡介……..…………………………………………..33
3.1.2 模擬退火法…………………………………………34
3.1.3 電極設計……………………………………………36
3.2 元件製程.............................................................................. 37
3.2.1 簡介…………………………………………………37
3.2.2 步驟…………………………………………………41
第四章 實驗量測及結果分析 ............................................................. 46
4.1 簡介 .................................................................................... 46
4.2 腔內偏振模態轉換模擬…………………………………...47
4.2.1 Single APLN EO PMC………………………………49
4.2.2 Dual PPLN EO PMC………………………………...54
4.3 Single APLN EO PMC頻譜調制…….................................. 57
4.3.1 實驗架構……………………………………………57
4.3.2 實驗量測……………………………………………59
4.3.2.1單趟光參量產生頻譜量測………………….59
4.3.2.2光參量振盪器特性量測…………………….62
4.3.2.3 APLN EO PMC頻譜調制量測……………..64
4.4 Dual PPLN EO PMC 頻譜調制…………………………... 71
4.4.1 實驗架構與晶片操作模式分析……………………..71
4.4.2 實驗量測……………………………………………..71
4.5 APLN/PPLN EO PMC之分析比較………………………...75
4.5.1 溫度調制……………………………………………75
4.5.2 電壓調制……………………………………………77
4.5.3 總整理………………………………………………78
第五章 結論與未來展望 ......................................................................79
5.1 結論 ...................................................................................79
5.2 未來展望 .......................................................................... 80
5.2.1不同的多訊號APLN EO PMC設計………………..80
5.2.2 改良方法…………………………………………..81
5.2.3 應用………………………………………………..85
參考文獻………………………………………………………………..88
參考文獻 [1] Theodors H. Maiman,”Stimulated optical emission in Ruby”,Nature.
187,p4(1960)
[2] S. E. Miller, “Integrated Optics : an introduction, ” Bell. Syst. Tech. J.,48,p2059-2069 (1969)
[3] W. H. Zachariasen ,Skr. Norske Vid-Ada. , Oslo ,Mat. Naturv. No.4 (1928)
[4] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J.American Ceram. Soc. 48,p112 (1965)
[5] 胡明理, ” Zn:LiNbO3 之晶體生長與其特性研究”,國立中央大
學(2004)
[6] P. E. Powers, Thomas J. Kulp, and S. E. Bisson,” Continuous tuning
of a continuous-wave periodically poled lithium niobate optical
parametric oscillator by use of a fan-out grating design”, OPTICS
LETTERS.23,p159(1998)
[7] M. E. Klein, P. Gross and K.-J. Boller, M. Auerbach, P. Wessels, and
C. Fallnich.” Rapidly tunable continuous-wave optical parametric
Oscillator pumped by a fiber laser”, OPTICS LETTERS.28,p920
(2003)
[8]C. Yu and A. H. Kung, "Grazing-incidence periodically poled
LiNbO3
2233-2238 (1999) optical parametricoscillator," J. Opt. Soc. Am. B 16,
[9] Bjorn Jacobsson, Mikael Tiihonen, Valdas Pasiskevicius, and Fredrik Laurell,” Narrowband bulk Bragg grating optical parametric
oscillator,” OPTICS LETTERS.30, 2281(2005)
[10]J. W. Evans, “The Šolc birefringent filter,” J. Opt. Soc. Amer., 48,
p142 (1958).
[11]林昭弘,” Integrated Periodically and Aperiodically Poled Lithium Niobate (PPLN-APLN) Photonics and Laser Devices”國立中央大學(2009)
[12]Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H.
Chou,"Nonlinear multiwavelength conversion based on an aperiodic
optical superlattice in lithium niobate," Opt. Lett. 27, p2191 (2002)
[13]C. H. Lin, Y. H. Chen, * S. W. Lin, C. L. Chang, Y. C. Huang, and
J. Y. Chang,” Electro-optic narrowband multi-wavelength
filter in aperiodically poled lithium niobate” OPTICS EXPRESS . 15, 9859(2007)
[14] S. Kirkpatrick,C. D. Gelatt, Jr. ,M.P.Vecchi “Optimization by
Simulated Annealing”13 May 1983,Volume 220, Number 4598
SCIENCE
[15]J. A. ARMSTRONG, N. BLOEMBERGEN, J. DUCUING,! AND P. S. PERSHAN, "Interactions between Light Waves in a Nonlinear
Dielectric", Phys. Rev. Vol. 127, No. 6, 1918-1939(1962)
[15]Gregory David MillerJuly “PERIODICALLY POLED LITHIUM NIOBATE:MODELING, FABRICATION, AND NONLINEAR-OPTICAL PERFORMANCE”, Department of Electric Engineering, Stanford University(1998)
[17]Yen-Chieh Huang, ”Principles of Nonlinear Optics Course Reader ”國立清華大學(2002)
[18]A. Yariv and P. Yeh, “Optical Waves in Crystal: propagation and
control of laser radiation,” John Wiley & Sons, New York(1984).
[19] D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T.
K. Plant,R. R. Stephens, and C. M. Walker, Appl. Phys. Lett. 34,
391 (1979).
[20] Yan-Qing Lu, Zhi-Liang Wan, Quan Wang, Yuan-Xin Xi, and Nai-Ben Ming,” Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications”, APPLIED PHYSICS LETTERS.77, p3719 (2000)
[21]Xianfeng Chen, Jianhong Shi, Yuping Chen, Yiming Zhu, Yuxing Xia, and Yingli Chen,” Electro-optic Solc-type wavelength filter in
periodically poled lithium niobate”, OPTICS LETTERS. 28, 2115(2003)
[22] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate” OPTICS LETTERS. 22(1997)
[23] N. Metropolis et.al.,” Equation of state calculation by fast computing machines”, Journal of Chemical Physics 21 (1953) 1087-92.
[24] L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization switching of lithium niobate”, Appl. Phys. Lett. 81,1666 (2002)
[25] H. Ito, C. Takyu, and H. Inaba, ”Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes”, Electron. Lett. 27, 1221 (1991)
[26] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy”,Appl. Phys. Lett. 85, 452 (2004)
[27] g. zheng,w. she,” Fast and wide-range continuously tunable Solc type filter based on periodically poled LiNbO3” ,Appl. Phys. B.88, 545–549 (2007)
[28] Jianhong Shi*, Jinghe Wang, Lijun Chen, Xianfeng Chen** and Yuxing Xia,” Tunable Šolc-type filter in periodically poled LiNbO3
by UV-light illumination”,OPTICSEXPRESS.14,6279(2006)
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2010-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明