博碩士論文 972206022 詳細資訊


姓名 郭中竣(Chung-Chun Kuo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 侷域共振聲子濾波器
(Locally resonant phononic filter)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是研究利用聲波正向入射荷姆霍茲共振器,觀察其低頻和高頻共振頻率因為結構參數改變的變化行為,並針對高頻共振頻率,提出對應的彈簧模型,最後利用實驗量測來驗證模擬和彈簧模型的正確性。
在模擬方面,利用有限時域差分法(Finite-Difference Time-Domain, FDTD)來計算出結構的穿透頻譜圖,挑選出低頻和高頻的共振頻率,再利用連續波入射結構得到速度場和壓力場圖,經由穩態場的處理,得到不隨時間改變的場圖,從該場圖中,我們觀察出在高頻共振頻率所對應的彈簧模型,比較模擬計算和彈簧模型的結果,會發現共振頻率因結構參數改變的行為是相互符合的。
在量測方面,設計了兩種不同方式製作的荷姆霍茲共振器,並利用ultrasonic immersion transmission technique方式量測不同結構的穿透頻譜。比較兩種不同方式設計荷姆霍茲共振器,會發現各有其優缺點,但相同的是低頻和高頻的transmission dip在兩種結構中都有出現。對高頻共振頻率來說,量測到的強度最弱其衰減強度達到30dB,低頻的共振頻率也有20dB。這結果可以被用來設計窄頻寬的聲波濾波器。
摘要(英) This work demonstrates the influences of various structural parameters on resonant modes at lower and higher frequencies with the normal incidence of the Helmholtz resonators. From observing the field distribution, the spring-mass model is introduced to explain the resonant modes of the Helmholtz resonators. After, we use the measurement to show the accuracy of the simulation results and the reasonable of the spring-mass model.
For the simulation, the Finite-Difference Time-Domain method is applied to calculate the transmission spectra of the Helmholtz resonators. The stable pressure and velocity fields are obtained by launching the continuous wave into the structure at lower and higher resonant frequency, respectively. From the field distributions, the comparisons of the resonant frequencies with various structural parameters between the spring-mass models and the simulation results are in good agreement.
For the measurement, we design two different methods to fabricate the Helmholtz resonators. The ultrasonic immersion transmission technique is applied to measure transmission spectra of Helmholtz resonators. The transmission dips with resonant modes at lower and higher frequencies are observed in both two different types of the Helmholtz resonators. The transmission can be as low as -30dB and -27dB for the resonant modes at higher and lower frequencies, respectively. The results can be applied to the design of a narrow pass band acoustic filter.
關鍵字(中) ★ 荷姆霍茲共振器
★ 聲子晶體
關鍵字(英) ★ Helmholtz resonator
★ phononic crystal
論文目次 第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.3 結論 7
第二章 基本原理 8
2.1 荷姆霍茲共振器 8
2.2 彈性波在材料中傳播行為 21
2.3 數值分析方法 25
2.3.1有限時域差分法(Finite-Difference Time-Domain, FDTD) 25
2.3.2 穩態場的處理 32
2.4 結論 33
第三章 荷姆霍茲共振濾波器 35
3.1 緒論 35
3.2 FDTD模擬結構與結果 35
3.3 結論 48
第四章 元件製作與量測 49
4.1 侷域共振聲子濾波器的製作 49
4.2 量測系統和量測結果與討論 54
4.3 誤差討論 62
4.4 結論 69
第五章 總結與未來展望 72
5.1 結論 72
5.2 未來展望 73
參考文獻 76
參考文獻 [1] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett., Vol. 71,No. 13, pp. 2022-2025, 1993.
[2] Yukihiro Tanaka and Shin-ichiro Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures”, Phys. Rev. B,Vol. 58, No. 12, pp. 7958-7965, 1998.
[3] R. Sainidou, B. Djafari-Rouhani, and J. O. Vasseur, “Surface acoustic waves in finite slabs of three-dimensional phononic crystals”, Phys. Rev. B,Vol. 77, pp. 094304, 2008.
[4] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sánchez-Dehesa, C. López and J. Llinares, “Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal”, Phys. Rev. B,Vol. 59, pp. 12169, 1999
[5] Nicholas Fang, Dongjuan Xi, Jianyi Xu, Muralidhar Ambati, Werayut Srituravanich, Cheng Sun and Xiang Zhang, “Ultrasonic metamaterials with negative modulus”, Nature Mater., Vol. 5, pp. 452 - 456, 2006.
[6] X. Hu, C. T. Chan and J. Zi, “Two-dimensional sonic crystals with Helmholtz resonators”, Phys. Rev. E, Vol. 71, pp. 055601, 2005.
[7] Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm and S. A. Nikitov, “Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators”, J. Appl. Phys.,Vol. 103, pp. 064907, 2008
[8] X. Hu, K. M. Ho, C. T. Chan and J. Zi, “Homogenization of acoustic metamaterials of Helmholtz resonators in fluid”, Phys. Rev. B, Vol. 77, pp. 172301, 2008.
[9] Y. Cheng, J. Y. Xu and X. J. Liu, “Broad forbidden bands in parallel-coupled locally resonant ultrasonic metamaterials”, Appl. Phys. Lett., Vol. 92, pp. 051913, 2008.
[10] I. E. Psarobas, N. Stefanou and A. Modinos, “Phononic crystals with planar defects”, Phys. Rev. B, Vol. 62, pp. 5536-5540, 2000.
[11] Heng Jiang, Yuren Wang, Milin Zhang, Yanping Hu, Ding Lan, Yinmin Zhang, and Bingchen Wei, “Locally resonant phononic woodpile: A wide band anomalous underwater acoustic absorbing material”, Appl. Phys. Lett., Vol. 95, pp. 104101, 2009.
[12] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan and P. Sheng, “Locally resonant sonic materials”, Science, Vol. 289, pp. 1734, 2000.
[13] C. Goffaux, J. Sánchez-Dehesa, A. Levy Yeyati, Ph. Lambin, A. Khelif, J. O. Vasseur and B. Djafari-Rouhani, “Evidence of Fano-like interference phenomena in locally resonant materials”, Phys. Rev. Lett., Vol. 88, pp. 225502, 2002.
[14] J. C. Hsu and T. T. Wu, “Lamb waves in binary locally resonant phononic plates with two-dimensional lattices”, Appl. Phys. Lett., Vol. 90, pp. 201904, 2007.
[15] G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures”, Phys. Rev. Lett., Vol. 93, pp. 154302 , 2004.
[16] R. Sainidou, B. Djafari-Rouhani, Y. Pennec, and J. O. Vasseur, “Locally resonant phononic crystals made of hollow spheres or cylinders”,Phys. Rev. B, Vol. 73, pp. 024302 , 2006.
[17] Y. Cheng, J. Y. Xu, and X. J. Liu, “One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus”, Phys. Rev. B, Vol. 77, pp. 045134, 2008.
[18] Chae Hoon Sohn, Ju Hyun Park, “A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators”, Aerospace Science and Technology, 2011.
[19] Torbjörn A. Johansson and Mendel Kleiner, “Theory and experiments on the coupling of two Helmholtz resonators”, J. Acoust. Soc. Am., Vol. 110, Issue 3, pp. 1315-1328, 2001.
[20] Ahmet Selamet and Iljae Lee, “Helmholtz resonator with extended neck”, J. Acoust. Soc. Am., Vol. 110, Issue 4, pp. 1975-1985, 2003.
[21] A. Selamet and P. M. Radavich, N. S. Dickey, J. M. Novak, “Circular concentric Helmholtz resonators”, J. Acoust. Soc. Am., Vol. 101, Issue 1, pp. 41-51, 1997.
[22] David R. Smith and Norman Kroll, “Negative Refractive Index in Left-Handed Materials”, Phys. Rev. Lett.,Vol 85, pp. 2933 , 2000
[23] Ashwin K. Iyer, Peter C. Kremer and George V. Eleftheriades, “Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial”, Opt. Express, Vol. 11, No. 7, 2003
[24] Anthony Grbic and GeorgeV. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens”, Phys. Rev. Lett.,Vol 92, No. 117403 , 2004
[25] Zubin Jacob, Leonid V. Alekseyev and Evgenii Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit”, Opt. Express, Vol. 14 Issue 18, pp.8247-8256, 2006.
[26] Jensen Li, Lee Fok, Xiaobo Yin, Guy Bartal and Xiang Zhang, “Experimental demonstration of an acoustic magnifying hyperlens”, Nature Mater., Vol. 8, pp. 931 - 934, 2009
[27] J. B. Pendry, D. Schurig, D. R. Smith, “Controlling Electromagnetic Fields”, Science, Vol 312, no. 5781 pp. 1780-1782, 2006
[28] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies”, Science, Vol 314, pp. 977, 2006
[29] Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, “Fundamentals of Acoustics”, Fourth edition, Wiley, 2000.
[30] 丁昌林、趙曉鵬, “可聽聲頻段的聲學超材料”, 物理學報, Vol. 58, No. 9, 2009.
[31] Haluk Erol and Cem Meric, “Application of resonators and a side branch duct with an expansion chamber for broad band noise control”, Noise Control Eng. J., Vol. 57, Issue 5, pp. 476-492, 2009.
[32] Y. Cheng, J. Y. Xu, and X. J. Liu, “One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus”, Phys. Rev. B, Vol. 77, pp. 045134, 2008.
[33] Y. Cheng, J. Y. Xu, and X. J. Liu, “Broad forbidden bands in parallel-coupled locally resonant ultrasonic metamaterials”, Appl. Phys. Lett., Vol. 92, pp. 051913, 2008.
[34] 杜功煥、朱哲民、龚秀芬, “声學基础”, 第二版, 南京大學出版社, 2001.
[35] B.A. AULD, “Acoustic Fields and Wave in Solids”, Wiley, 1973.
[36] M. M. Sigalas, N. Garcia, “Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method”, J. Appl. Phys., Vol 87, No. 6, 2000.
[37] Julius G. Tolan, John B. Schneider, “Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces”, J. Acoust. Soc. Am., Vol. 114, No. 5.
[38] 簡宏達, “二維雙輸入雙輸出光子晶體分光器”, 國立中央大學光電科學研究所碩士論文, 2004.
[39] Fu-Li Hsiao, Chia-Hua Chan, Chii-Chang Chen, and Kuei-Chu Hsu, “Acoustic resonant leaky mode effects”, Appl. Phys. Lett., Vol. 94, pp. 044101, 2009.
[40] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal”, Phys. Rev. B, Vol. 68, pp. 214301, 2003.
指導教授 陳啟昌、蕭輔力
(Chii-Chang Chen、Fu-Li Hsiao)
審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡