博碩士論文 972206023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.230.173.249
姓名 陳虹伶(Hung-ling Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高品質環形光子晶體共振腔之研究
(High Quality Annular Photonic Crystal Resonator)
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 一維光子晶體等效非均向介值之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光子晶體為週期排列的人工結構,可以使得某些頻段的光無法在結構中傳
遞,而可進行一些光學元件上的設計與應用。光子晶體共振腔為一項重要的發
展領域,能應用在雷射與單光子光源發射器元件,其目標為製作出高Q質,及
小體積的結構。本研究使用一維光子晶體,模擬其中光學特性,再將其彎曲形
成環型光子晶體的共振腔。應用某些頻段的光不可傳遞的特性,可使得光可以
被侷限在共振腔中。本論文分別進行垂直方向與水平方向光侷限的結構探討,
並進行優化模擬,而達到高Q質的要求,使光不易散失出共振腔。
我們使用Comsol模擬軟體,其模擬結果在水平方向可達極佳的光侷限結
果,水平方向Q值最高可以達到5*10^8,在垂直方向幾乎沒有光漏出去,此共
振腔的直徑只有16.6μm,光波長為1.2μm。
摘要(英) Photonic crystals (PCs) are periodic dielectric or metal-dielectric structures exhibiting photonic band gaps (PBG). An electromagnetic wave cannot propagate in a PC if its frequency is located in a PBG of the PC. Based on this effect, many useful photonic elements can be designed, such as photonic crystal waveguides (PCWs) and photonic crystal cavities (PCCs).
Research concerning PCCs makes important progresses recently. These new achievements can be utilized to design photonic crystal semiconductor lasers and
single-photon source components. The goal is to design cavities having high-quality factor (Q factor) and small structure sizes. In this study, we design high Q cavities of
one-dimensional PCs (1D PCs). We calculated the band structures of these 1D PCs and simulated their optical properties such as transmission rates, and then bent them
to form the annular photonic crystal cavities (APCCs), which are the candidates of the desired high-Q cavities for confining light. We discuss and analyze how to achieve the high-Q requirements through reducing the vertical and horizontal leakage of energy. By examining a lot of candidates having different refractive index/layer-thickness distributions, we found systematic ways to select the desired
high-Q structures. All the simulations of field patterns in this thesis are implemented by using
Comsol simulation software. The maximum Q value in the horizontal plane is found to be 8*10^5, and the vertical leakage of this cavity is very small. The diameter of this
cavity is 16.6 μm, and the working wavelength is 1.2 μm.
關鍵字(中) ★ 水平與垂直方向光侷限與優化
★ 光子晶體共振腔
★ 高品質
關鍵字(英) ★ localization and optimization of the vertical
★ photonic crystal resonator
★ High quality factor
論文目次 第一章 光子晶體.................................... 1
1-1 光子晶體歷史與簡介.............................. 1
1-2 光子晶體能隙................................... 3
1-3 缺陷在二維光子晶體中的特性....................... 4
第二章 光子晶體基本理論 ............................ 7
2-1 平面波展開法.................................. 7
2-2 傳遞矩陣法 ................................... 9
2-3 光子晶體共振腔與自發輻射 ....................... 12
2-4 布拉格反射與全方位反射器 ....................... 14
2-5 有效折射率計算 ............................... 17
第三章 環形光子晶體共振腔 .......................... 21
3-1 圓環形光子晶體文獻回顧 ......................... 21
3-2 二維高品質光子晶體共振腔文獻回顧 ................. 23
3-3 高品質光子晶體設計與分析 ....................... 25
3-3-1 垂直方向高品質設計 .......................... 25
3-3-1 水平方向高品質設計 .......................... 27
第四章 光子晶體共振腔設計與模擬結果 .................. 29
4-1 水平方向結構優化 .............................. 32
4-1-1 變化中心半徑 ............................... 32
4-1-2 變化中心到外圍的折射率 ....................... 34
4-1-3 變化中心到外圍的週期比 ....................... 36
4-2 垂直方向結構優化 .............................. 38
4-2-1 變化中心半徑 ............................... 38
4-2-2 變化中心到外圍的折射率 ....................... 40
4-2-3 變化中心到外圍的週期比 ....................... 41
4-3 結合水平與垂直優化結果 ........... 43
4-4 不同結構之模擬結果 ............. 45
4-4-1 六角形環形光子晶體共振腔 ............. 45
4-4-2 正方形環形光子晶體共振腔 ............. 46
第五章 結論與未來展望 ............49
參考資料 .......... 51
參考文獻 [1] P. Vukosic et al., "Quantified interference and diffraction in single Morpho butterfly scales," Proc. Roy. Soc: Bio, 266, 1403 (1999).
[2] J. Zi et al., "Coloration strategies in peacock feathers," Proc. Nat. Acad. Sci. USA, 100, 12576 (2003).
[3] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
[4] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics
and Electronics," Phys. Rev. Lett.58, 2059 (1987).
[5] Chii-Chang Chen Pi-Gang Luan, Photonic Crystals. Wu-Nan culture enterprise (2005).
[6] R. D. Meade, and J. N. Winn J. D. Joannopoulos, Photonic Crystals. Princeton University Press (2008).
[7] http://en.wikipedia.org/wiki/Photonic_crystal.
[8] http://ab-initio.mit.edu/photons/tutorial/.
[9] E. M. Purcell, "Spontaneous emission probabilities at radio Frequencies," Phys. Rev. 69, 681 (1946).
[10] W. J. Kim, A. Stapleton, J.R. Cao, J. D. O’brien, P. D. Dapkus C.kim, "Quality factors in single-defect photonic crystal lasers with asymmetric cladding layers," J. Opt. Soc. Am. 19, 1777 (2002).
[11] J. K. Hwang, Y. H. Lee H. Y. Ryu, "The Smallest Possible Whispering-Gallery-Like Mode in the Square Lattice Photonic-Crystal," IEEE J. Quantum Electron. 39, 314 (2003).
[12] D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47 , 233-236 (1981).
[13] http://nano.nchc.org.tw/photonic/bragg.html.
[14] J.N. Winn, Shanhui Fan, Chiping Chen, J. Michel, John D. Y. Fink, "A Dielectric Omnidirectional Reflector," Science 282, 1679 (1998).
[15] 曾彥均, "高品質因子與低模態體積光子晶體微共振腔之設計與製作,"
中央大學碩士論文 (2007).
[16] Amnon Yariv Jacob Scheuer, "Annular Bragg defect mode resonators," J. Opt. Soc. Am. B, 20, 2285 (2003).
[17] William M. J. Green, Guy A. DeRose, Amnon Yariv Jacob Scheuer, "Lasing from a circular Bragg nanocavity with an ultra-small modal volume," Appl. Phys. Lett. 86, 251101 (2005).
[18] Chun Jiang, Lin Luo, "Spherical Photonic Crystal Microcavity with Ultrahigh Quality Factor," IEEE, 1, 1-3 (2010).
[19] O. Painter, et al., "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[20] Yoshihiro Akahane, et al., "High-Q photonic nanocavity in a two dimensional photonic crystal," Nature 425, 944 (2003).
[21] T. Yoshie, et al., "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 201 (2005).
[22] K. Noazki et al., "Laser characteristics with ultimate-small modal volume
in photonic crystal salb point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[23] A. Shinya, E. Kuramochi et al T. Tanabe, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110-1 (2007).
[24] B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature mate. 4, 207-210 (2005).
[25] Takashi Asano, and Susumu Noda Yoshinori Tanaka, "Design of Photonic Crystal Nanocavity With Q-Factor of 10^9," J. Lightwave Technol. 26, 1532-1539 (2008).
[26] B. E. Little, "Ultracompact Si-SiO2 microring resonator optical dropping filter," Opt. Lett. 23, 1570–1572 (1998).
[27] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett., 58 , 2059 (1987).
[28] C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal-Processing Approach, New York, Wiley (1999).
指導教授 欒丕綱(Pi-Gang Luan) 審核日期 2011-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明