博碩士論文 972206028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.17.162.247
姓名 沈帛寬(Bo-Kuan Shen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具45度反射面之非共平面轉折波導光路
(SOI-based non-coplanar bending waveguide with 45 degree reflector)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端
★ 具三維光路之光連接發射端模組★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組
★ 建立於矽基光學平台之高分子聚合物波導光路★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製
★ 發光二極體色溫控制技術及其於色序式微型投影機之應用★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模
★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技的進步與網路的發達,傳播的資訊量以倍數成長,如何提升資訊的傳遞速度已成為不可避免的課題,傳統同軸電纜與銅金屬導線受到材料特性限制已不敷使用,因此利用光做為高速傳遞媒介之光連結技術已成為先進歐美日各國爭相研究的課題。
本研究提出一個具45°反射面之非共平面轉折波導光路,此技術
可應用於晶片內或晶片與晶片間光學訊號傳遞。在架構上,採取主動元件與被動元件異側架構,藉由一個具光學品質的矽基45°反射面,利用波長為1550 nm 的紅外光源達到兩層間的高速訊號連結。此非共平面轉折波導光路包含45°微反射面與梯形脊狀波導,其梯形脊狀波導結構大小為40 μm。
本研究完成梯形脊狀波導以及非共平面轉折波導光路之光學模
擬、製程與光學特性量測,並發展一套針對脊狀波導端面之拋光研磨技術。經由設計的非共平面轉折波導光路,在梯形脊狀波導部分,插入損耗為-4.32 dB,拋光過後可提升插入損耗約49 %,傳播損耗為-0.404 dB/cm,出射端多模光纖空間位移容忍度在耦合能量損失1 dB時約為35 μm;非共平面轉折波導光路部份,插入損耗為-4.51 dB,拋光後可提升插入損耗約25 %,入射端單模光纖光源位移容忍度在耦合能量損失1 dB 時約為23 μm,接收端多模光纖位移容忍度則為42 μm,相鄰通道的串音雜訊準位約為-50 dB。
摘要(英) In recent years, the optical interconnect is an important issue for communication technology. How to improve the speed of information transfer has become an inevitable topic. Because of the limited by material properties, traditional of the coaxial cable and copper wire systems are inadequate. High-speed transmission using light as a medium of the optical interconnector has become the subject of competing research.
In this paper, a non-coplanar bending waveguide with 45 degree reflector is proposed on SOI-based. This technique can be applied to the optical interconnector of inter- or intra-chip. In the framework, the active electrical components and passive photonic components are opposite side. The 45 degree micro-reflector with a smooth slant quality, and high-speed signaling link between active electrical components layer and passive photonic components layer are achieved by using infrared wavelength of 1550 nm light source. Non-coplanar bending waveguide
include a Si-based 45 degree micro-reflector and a trapezoidal ridge waveguide which height is about 40 μm.
In this work, the optical simulation, fabrication and measurement of non-coplanar bending waveguide with 45 degree reflector and trapezoidal ridge waveguide were achieved. The polishing techniques for end facet of
trapezoidal ridge waveguide were also developed. After polishing the waveguide, the insertion loss can be enhanced 49% than unpolished waveguide. The insertion loss of trapezoidal ridge waveguide was -4.32 dB, and its propagation loss was -0.404 dB/cm. At output multi-mode fiber, the 1-dB degradation tolerance was about 35 μm. In the non-coplanar bending waveguide with 45 degree reflector, the insertion loss can be enhanced 25% after polishing the waveguide facet. The insertion loss of non-coplanar bending waveguide was -4.51dB, and the 1-dB degradation tolerance of input single-mode fiber was about 23 μm. At output multi-mode fiber, the 1-dB degradation tolerance is about 42 μm, and the cross-talk of nearby waveguide was about -50 dB.
關鍵字(中) ★ 光波導
★ 轉折波導
★ 45度斜面
關鍵字(英) ★ optical waveguide
★ waveguide bending
★ 45 degree slant
論文目次 中文摘要…………………………………………………………………i
英文摘要………………………………………………………………iii
目錄 ……………………………………………………………………v
圖目錄 ………………………………………………………………vii
表目錄 ………………………………………………………………xiii
第一章 序論 ……………………………………………………………1
1-1 前言 ………………………………………………………………1
1-2 研究動機與目的 …………………………………………………5
第二章 非共平面轉折波導光路設計…………………………………7
2-1 非共平面轉折波導光路結構尺寸設計……………………………7
2-2 非共平面轉折波導光路分析……………………………………12
2-2.1 梯形脊狀波導結構分析 ………………………………………12
2-2.2 非共平面轉折波導光路光學準位分析 ………………………17
2-3 非共平面轉折波導光路結構改善設計…………………………21
2-3.1 非共平面轉折波導光路改善之結構尺寸 ……………………21
2-3.2 非共平面轉折波導光路結構光學模擬 ………………………22
第三章 非共平面轉折波導光路之製作………………………………27
3-1 長直梯形脊狀波導製作…………………………………………27
3-2 非共平面轉折波導光路製作……………………………………33
3-3 梯形脊狀波導端面研磨…………………………………………36
第四章 非共平面轉折波導光路之量測與分析………………………40
4-1 長直梯形脊狀波導光學特性量測………………………………40
4-1.1 長直梯形脊狀波導光學準位量測 ……………………………40
4-1.2 長直梯形脊狀波導傳播損耗量測 ……………………………44
4-2 非共平面轉折波導光路光學特性量測…………………………46
4-2.1 非共平面轉折波導光路光學準位量測 ………………………46
4-2.2 非共平面轉折波導光路串音量測 ……………………………52
第五章 結論與未來展望……………………………………………54
參考文獻………………………………………………………………57
參考文獻 1. R. Heming, L. C. wittig, P. Dannberg, J. Jahns, E. B. Kley, and M.Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26, 2136-2141 (2008).
2. P. Lukowicz et al., “Optoelectronic interconnection technologyin the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9, 624-635 (2003). 3. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processesfor volume production of highly reliable fiber
optic components for telecom- anddatacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21, 147-156 (1998).
4. B. S. Rho, S. H. Hwang, J. W. Lim, G. W. Kim, C. H. Cho, and W.-J. Lee, “Intra-system optical interconnection module directly integrated on a polymeric optical waveguide,” OPTICS EXPRESS, 17, 1215-1221(2009).
5. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P.
Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F.
Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-Level optical interconnects using CMOS-based rransceivers,” IEEE Transactions on Advanced Packaging, 32, 345-359 (2009).
6. S. Hiramatsu and T. Mikawa, “Optical design of active
interposer for high-speed chip level optical interconnects,” J. of Lightwave Technol., 24, 927-934 (2006).
7. I. Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. De Wilde, J. Van Campenhout, D. Van Thourhout, J. Van Campenhout, and D. Stroobandt, “Systematic simulation-based predictive synthesis of integrated optical interconnect,” IEEE Trans. on VLSI Sys., 15, 927-940 (2007).
8. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-um CMOS SOI technology,” IEEE J. Solid-state Circuit., 41, 2945-2955 (2006).
9. J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A.
Vukovic, and P. Sewell, “The single-mode condition for
silicon-on-insulator optical rib waveguides with large cross section,” J. of Lightwave Technol., 22, 1923-1929 (2004).
10. M. M. Miloševic´, P. S. Matavulj, P. Y. Yang, A. Bagolini, and G. Z. Mashanovich, “Rib waveguides for mid-infrared silicon photonics,” J. Opt. Soc. Am. B, 26, 1760-1766 (2009).
11. Y. Wang, Z. Lin, C. Zhang, F. Gao, and F. Zhang, “Integrated SOI rib waveguide using inductively coupled plasma reactive ion etching,” IEEE J. of Selected Topics in Quantum Electronics, 11, 254-259 (2005).
12. K. K. Lee, D. R. Lim, and L. C. Kimerling,“Fabrication of ultralow-loss SiSiO2 waveguides by roughness reduction,” Optics Letters, 26, 1888-1890 (2001).
13. R. Halir, A. Ortega-moñux, J. O. Wangüemert-pérez, I.
Molina-fernández, and P. Cheben, “Fabrication tolerance
analysis of bent single-mode rib waveguides on SOI,” Optical and Quantum Electronics, 921-932 (2007).
14. R. P. Boye, and R. K. Kostuk, “Investigation of the effect if finite grating size on the performance of guided-mode resonance filters,” Appl. Opt., 39, 3649 (2000).
15. G. B. Hocker, and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Applied Optics, 16, 113-118 (1977)
16. H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, M. L. Wu,“Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, 17, 20938-20944 (2009).
17. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J.Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical 59 interconnects,” IEEE J. Lightwave Technol., 22, 2043-2054 (2004).
18. F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17, 10514-10521 (2009).
19. 張育誠, “微型光學讀取頭之元件,” (中央大學光電所碩士
論文, 台灣, 2003)
20. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sensors and Actuators A: Physical, 84, p. 116-125 (2000)
21. I. Zubel, “Silicon anisotropic etching in alkaline solutions IV – The effect of organic and inorganic agents on silicon nisotropic etching process,” Sensors and Actuators A: Physical, 87, p. 163-171 (2001)
22. I. Zubel, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, 93, p. 138-147 (2001)
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明