博碩士論文 972206035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.148.145.97
姓名 徐福駿(Fu-jun Xu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙曲透鏡成像解析度之研究
(Study on the image resolution problem of a hyperlens)
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 一維光子晶體等效非均向介值之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統透鏡無法突破繞射極限,但使用超材料製作的超級透鏡卻可以打破繞射極限的障礙,使得”次波長成像”不再是夢想。超級透鏡雖然能藉著重建消逝波的資訊而做到次波長成像,但此種成像只能在近場實現,因此其實用性有限。在突破繞射極限之後,科學家設計出一些新元件,要使消逝波成份轉換成傳導波,以便能於遠場成像,方便其他傳統光學元件做進一步處理。本文所討論的雙曲透鏡,便是以此為目標所設計的結構。
雙曲透鏡(hyperlens)的基本設計,是利用兩種異號介電係數的材質(多為金屬與介電質),週期層狀排列而成的圓柱形結構,在H-polarization的電磁波下,具有如透鏡放大成像的特性。
本文係用傳遞矩陣法計算點光源經由雙曲透鏡的成像,同時輔以光線追跡方式,討論透鏡厚度改變下成像行為的變化。利用單光源成像集中度標準差,量化雙曲透鏡成像之side-lobes光場帶來的影響,並研究side-lobes對成像集中度以及各情況下雙光源最小可分辨距離的影響
根據數值模擬的結果,我們發現:雙曲透鏡成像相對於厚度變化,具有震盪現象。這一震盪現像顛覆了我們通常對於雙曲透鏡厚度越大越好的印象。此震盪現象對我們在製作雙曲透鏡時所考慮的理想厚度之研究提供了重要資訊。
摘要(英) A conventional optical lens cannot be used to break the diffraction limit, but an appropriately designed metamaterial superlens can do the job, and this fact leads to the realization of subwavelength imaging. Although a superlens can indeed form subwavelength image through reconstructing the information carried by the evanescent waves of the source, the image can only be found in the near field zone, which restricts the practicality of this component. After the idea of superlens has been proposed, scientists further developed other novel devices in order to resolve the disadvantage of near field imaging, hoping to transfer evanescent waves to propagating waves and reconstruct image in the far field zone, which will be more convenient for further manipulation by conventional optical devices. The hyperlens structure discussed in this thesis is a kind of design for fulfilling this purpose.
The basic structure of hyperlens consists of two kinds of materials having permittivities of different signs (usually they are metals and dielectrics), arranging alternatively as cylindrical multilayer structure. For the H-polarized waves, this structure can form a magnified image outside the hyperlens in the far field zone for a subwavelength object close to the inner surface of this device.
We calculate the light fields by using the transfer matrix method. Besides, we have developed a ray-tracing technique for predicting the location of the images according the geometric optics. Based on the results obtained by these two methods, we further discuss the change of imaging characteristics under the influence of changing the layer thickness. By defining the effective width of the single source image via calculating the standard deviation of the field strength distribution, we can quantify the influence of the side-lobes of the image field. We also explore the influence of the side-lobes to the two images of the two sources and the least-distinguishable distance between them.
According to our simulation results, oscillating behaviors are observed for imaging characteristics of the hyperlens when we vary the thickness of the layers. This oscillating behavior conflicts to our expectation that a thicker hyperlens is also a better one. This phenomenon provides us useful and important information for designing an ideal hyperlens.
關鍵字(中) ★ 光追跡
★ 雙曲透鏡
★ 傳遞矩陣
關鍵字(英) ★ transfer matrix
★ ray-tracing
★ hyperlens
論文目次 中文摘要 I
Abstarct II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
第二章 基礎理論 3
2-1 雙曲透鏡簡介 3
2-1-1 雙曲透鏡色散關係與等頻率曲線 4
2-1-2 角動量資訊 5
2-1-3 雙曲透鏡的角動量資訊 9
2-1-4 雙曲透鏡設計 10
2-2 雙曲透鏡計算方法 13
2-2-1 光源所在區域空腔之入射場反射場與總場 13
2-2-2 傳遞矩陣法 18
2-2-3 雙曲透鏡光追跡 21
第三章 研究方法與模擬結果 23
3-1 模型參數設定 23
3-2 雙曲透鏡雙光源解析成像 24
3-2-1 雙曲透鏡場圖 25
3-3 雙曲透鏡介質選擇 27
3-3-1 單光源光追跡討論 27
3-3-2 適當的色散曲線 29
3-4 雙曲透鏡層數影響 32
3-4-1 Side-lobes 32
3-4-2 層數對Side-lobes影響 33
3-4-3 層數對雙光源解析度之影響 37
3-4-4 雙曲透鏡成像震盪性 43
第四章 結論未來展望 48
4-1 結論 48
4-2 未來展望 49
參考資料 50
參考文獻 [1] Willie J. Padilla, Dimitri N. Basov, David R. Smith, ”Negative refractive index metamaterials” Materials today 9, 28(2006).
[2] V. G. Veselago, “ The electrodynamics of substances with simultaneously negative values of εand μ,” Sov. Phys. Usp. 10, 509 (1968).
[3] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966 (2000)
[4] G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials”, J. Appl. Phys.102,116101 (2007)
[5] Zhaowei Liu, Ste’phane Durant, Hyesog Lee, Yuri Pikus, Nicolas Fang, Yi Xiong, Cheng Sun, and Xiang Zhang, “Far-Field Optical Superlens”, Nano Letters 7, 403(2007)
[6] J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses”, Appl. Phys. Lett. 80, 3286–3288 (2002).
[7] F. D. M. Haldane, “Electromagnetic surface modes at interfaces with negative refractive index make a "notquite-perfect" lens”,cond-mat,0206420 (2002).
[8] J.B.Pendry and S.A.Ramakrishna, “Near field lenses in two dimensions“,Journal of Physics:Codensed Matter 14,8463-8479(2002)
[9] D.R.Smith,J.B.Pendry and S.A.Ramakrishna, “The Asymmetric Lossy Near Perfect Lens ”,Journal of Mordern Optics 49,1747-1762(2002)
[10] J.B.Pendry and S.A.Ramakrishna, “removal of absorption and increase in resolution in a near field lens via optical gain”,Physical Review B 67,200101(2003)
[11] N. Fang,Z. Liu,Ta-Jen Yen,Xiang Zhang,”Regenerating evanescent waves from a silver superlens”,Optics Express,11,7,682-687(2003)
[12] N. Fang, Hyesog Lee, Cheng Sun, Xiang Zhang,“Sub–Diffraction-Limited Optical Imaging with a Silver Superlens”,Science 308. 534(2005)
[13] N. Fang and Xiang Zhang,” Imaging properties of a metamaterial superlens” Appl. Phys. Lett, 82, 2,161 (2003)
[14] Zubin Jacob, Leonid V. Alekseyev and Evgenii Narimanov,” Optical Hyperlens: Far-field imaging beyond the diffraction limit” Optics Express, 14,18 ,8247(2006)
[15] Zhaowei Liu, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang,” Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects”, Science 315, 1686(2007)
[16] Alessandro Salandrino, Nader Engheta,”Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations” Physical Review B 74, 075103 (2006)
[17] G.Cincotti,F.Gori,M. Santarsiero,F.Frezza,F.Furno,G. Schettini,“Plane wave expansion of cylindrical functions”Optics Communications 95,192-198(1993)
[18] Cheng-Ching Wang and Zhen Ye,” Spontaneous Emission in Cylindrical Periodically-Layered Structures” Phys. stat.174, 527(1999)
[19] 欒丕綱、陳啟昌, “光子晶體-從蝴蝶翅膀到奈米光子學”,五南出版社,台灣,民國九十四年
[20] D. R. Smith and D. Schurig, “ Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,”Phys. Rev. Lett. 90, 077405 (2003).
[21] V. A. Podolskiy, and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system”,Phys. Rev. B 71, 201101 (2005).
[22] A. A. Govyadinov and V. A. Podolskiy, “Meta-material photonic funnels for sub-diffraction light compression and propagation”, Phys. Rev. B 73(15), 155108 (2006).
[23] M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. “SmithTransformation-optical design of adaptive beam bends and beam expanders” Optics Express, 16, 15, 11555-11567 (2008)
[24] Zubin Jacob, Leonid V. Alekseyev, and Evgenii Narimanov“Semiclassical theory of the hyperlens“ J. Opt. Soc. Am. A. 24, 10,A54-A61(2007)
[25] 蔡爵仰,「電磁波與聲波雙曲透鏡之研究」,國立中央大學,碩士論文,民國98年。
[26] Dongdong LI, Changchun YAN, Dao Hua ZHANNG “Geometric parameter optimization of far-field hyperlens for super resolution”, Photonics and Optoelectronic (SOPO),ymposium,2010
指導教授 欒丕綱(Pi -Gang Luan) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明