博碩士論文 972206038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.191.5.239
姓名 謝佳昇(Hsieh Chia-Sheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究
(Process development of soft proton-exchangedwaveguides in periodically poled MgO:LiNbO3 forsecond harmonic generations)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究★ 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微型化的積體雷射元件有著非常多的應用,例如藍光雷射光源對於生
物醫療、雷射列印、光學儲存與讀取以及量測系統等有許多應用;綠光雷
射光源在資料印刷,雷射顯示器,精密加工,高解析度印刷器等等領域也有諸
多應用。
本研究選用5mol.%鎂摻雜鈮酸鋰,利用該材料本身的高非線性係數及
高抗光折變損害等優良特性製作波長轉換元件。我們在鎂掺雜鈮酸鋰中做
上軟質子交換波導並利用準相匹配技術做二倍頻,在實驗上以1550nm、
1064nm、808nm 三種波段當基頻光,並做上三種不同的準相位匹配二倍頻週
期在不同鎂掺雜鈮酸鋰軟質子交換波導中,各產生波段為775nm 的紅光、
532nm 之綠光、404nm 之藍光。
在理論模擬上,我們成功利用擴散離子交換式(ion exchange equation)
建立起軟質子交換波導的擴散模型,其擴散分布曲線與實際的量測結果有
一非常相似的分布。
在實驗的量測上,我們成功做出軟質子交換波導,並利用XRD 繞射儀
確定為單一晶相,並利用Fabry-perot 的方法量得其傳播損耗約為
1.4dB/cm。在藍光二倍頻,量得其藍光輸出約為0.2mw,其轉換效率大約
48%/W;在紅光二倍頻,量到的紅光輸出約為320nw,其轉換效率約為
0.2%/W;在綠光二倍頻,並無法找到相位匹配的溫度。
綠光二倍頻相位匹配頻寬經理論計算後,只有不到一度的範圍是找不
到相位匹配的主因。而紅光二倍頻轉換效率低落,則是因為基頻光與倍頻
光模態疊加積分過小之故。
摘要(英) Integrated miniaturized laser components has a lot of applications,such as
blue laser light source for bio-medical、laser printing、optical storage and
retrieval and measurement systems have many applications; green laser light
source in the data Printing、laser displays、precision machining、high-resolution
printing devices also has many applications。
we try to develop a fabrication method of a quasi-phase-matching (QPM)
second-harmonic generator in a low-loss soft proton exchange
optical-waveguide for achieving a high-efficiency laser based on a 5 mol. %
MgO:LiNbO3 characterized by high optical nonlinearity and high optical
damage resistance。In the experiment,light source with three different
wavelength in 1550nm、1064、808nm incident three different MgO:LN SPE
waveguide to generate second harmonic generation in 775nm、532nm、404nm
three different light。
In the theoretical simulation,we have successfully used diffusion-type ion
exchange (ion exchange equation) to establish the soft proton exchange
waveguide diffusion model,the diffusion distribution curve and the actual
measured results have a very similar distribution。
III
In the experimental measurements,we have successfully made the soft
proton exchange waveguide,using XRD diffraction identified as a single
phase,and the methods used Fabry-perot to measure propagation loss is about
1.4dB/cm。In the Blue light measurement,the maximum blue light output is
about 0.2mw and the conversion efficiency is about 48% / W; second harmonic
in the red light, the red light measurement,the maximum red light output is
about 320nw and the conversion efficiency is about 48% / W; in the green light
measurement,the phase matching temperature can not be found。
SHG temperature phase-matching bandwidth in green light is too small to
be found in the experiment by the theoretical calculation。The reason of the low
conversion efficiency in red light generation due to the bad mode overlapping
integral between the fundamental frequency and second harmonic frequency。
關鍵字(中) ★ 二倍頻
★ 軟質子交換波導
★ 準相位匹配
關鍵字(英) ★ second harmonic generation
★ soft proton exchange
★ quasi phase-matching
論文目次 論文摘要……………………………………………………………………….Ⅰ
誌謝…………………………………………………………………………….Ⅳ
目錄……………………….……………………………………………………VI
圖目…………………………………………………………………………….IX
表目………………………………………………………………………….XIII
第一章 緒論
1.1非線性光學簡介……………………………………………….1
1.2 研究動機………………………………………………………2
1.3 內容概要………………………………………………………4
第二章 理論
2-1 準相位匹配原理………………………………………………8
2.1-1 非線性轉換原理………………………………………...8
2.1-2 雙折射相位匹配原理………………………………….10
2.1-3 準相位匹配原理……………………………………….12
2.2 準相位匹配技術……………………………………………..15
2.2-1 鈮酸鋰波導簡介……………………………………….15
2.2-2 退火式質子交換波導………………………………….15
2.2-3 鎂掺雜鈮酸鋰波導研究……………………………….17
2.2-4 軟質子交換波導研究………………………………….18
2.2-5 軟質子交換波導的擴散理論………………………….19
2.3 波導內的二倍頻原理………………………………………..26
2.4 光場傳播法…………………………………………………..30
2.4-1光場傳播法原理簡介...………………………………...30
2.4-2 R-soft模擬……………………………………………30
1.藍光波導模擬…………………………………………31
2.綠光波導模擬…………………………………………34
3.紅光波導模擬…………………………………………37
第三章 元件製程
3.1週期性晶疇極化反轉結構的製作…………………………...40
3.2軟質子交換通道式波導的製作……………………………...46
第四章 實驗量測結果
4.1軟質子交換波導特性之量測………………………………...50
4.1-1 軟質子交換波導與閥值的關係……………………….50
4.1-2 軟質子交換波導之擴散曲線………………………….52
4.1-3 軟質子交換波導晶相分析…………………………….55
4.1-4 軟質子交換波導傳播損耗量測……………………….56
4.2藍光二倍頻量測………………………………………………59
4.3綠光二倍頻量測………………………………………………64
4.4紅光二倍頻量測………………………………………………67
第五章 結論與未來展望
5-1 結論…………………………………………………………..71
5-2 未來展望……………………………………………………..72
參考文獻 [1.1] Maiman, T. H., Phys. Rev. Letters, 4, 564 (1960).
[1.2] P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961)
[1.3] LE Myers, GD Miller, RC Eckardt, MM Fejer, RL … - Optics …, 1995 - opticsinfobase.org
[1.4]. S. E. Miller, “Integrated Optics : an introduction, ” Bell. Syst. Tech. J.,48, p2059-2069 (1969)
[1.5] R. S. Weis and T. K. Gaylor,,” Lithium Niobate: Summary of Physical Properties” Appl. Phys. A 37, 191-203 (1985) Applied
[1.6] J.R. Schwesyg • M.C.C. Kajiyama • M. Falk • D.H. Jundt • K. Buse • M.M. Fejer Appl Phys B (2010) 100: 109–115
[1.7] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[1.8] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[1.9] Takumi Fujiwara et al Appl. Phys. Lett. Vol.61 No.7 1992
[1.10] OPTICS LETTERS / Vol. 23, No. 13 / July 1, 1998
[1.11] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
[1.12] o. gayer1, z. sacks2 e. galun2 a. arie1 “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3” Appl. Phys. B 91, 343–348 (2008)
[13] Photonics Industry & Technology Development Association
Sep 2000
[14] Photonics Industry & Technology Development Association Jan 2000
[2.1-1] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[2.1-2] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan,“Interactions between light waves in a nonlinear dielectric.”, Phys. Rev., Vol. 127, 1962
[2.1-3] L. E. Myers,* R. C. Eckardt, M. M. Fejer, and R. L. Byer “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3” J. Opt. Soc. Am. B/Vol. 12, No. 11/November 1995
[2.2-1]R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460 (1974)
[2.2-2] José Manuel M. M. de Almeida , “Design methodology of annealed H+ waveguides in ferroelectric LiNbO3” Optical Engineering 46_6_, 064601 _June 2007_
[2.3-3] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[2.2-4] “Guided-to-radiation polarization mode conversion in electro-optic PPLN APE waveguides“中央大學光電科學研究所碩士論文, 鄧聖龍, 中華民國九十七年七月
[2.2-5] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics., 2, p187-196 (1996).
[2.2-6] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics.,vol.2,pp187-196(1996)
[2.2-7] L. Chanvillard, P. Aschie´ ri, P. Baldi,a) D. B. Ostrowsky, and M. de Micheli “Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions” APPLIED PHYSICS LETTERS VOLUME 76, NUMBER 9 28 FEBRUARY 2000
[2.2-8] K. El Hadi , P. Baldi , M.P. De Micheli , D.B. Ostrowsky. ,Yu.N. Korkishko , V.A. Fedorov , A.V. Kondrat’ev, “Ordinary and extraordinary waveguides realized by reverse proton exchange on LiTaO,” Optics Communications 140 (1997) 23-26
[2.2-9] Tomoya Sugita, Kiminori Mizuuchi, Yasuo Kitaoka, and Kazuhisa Yamamoto ,” 31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide
by frequency doubling of an AlGaAs laser diode”, OPTICS LETTERS / Vol. 24, No. 22 / November 15, 1999
[2.2-10] Yuri Korkishko, Vyacheslav Fedorov, Sergey Kostritskii, Evgeny Maslennikov, Marina Frolova, Alexander Alkaev “Optical and Structural Properties of Proton Exchanged MgO:LiNbO3 waveguides
[2.2-11]Sandeep T,Vohra and Alan R. Mickelson “diffusion characteristic and waveguiding properties of proton-exchange and anneal LiNbO3 channel waveguide” J. Appl. Phys. 66 (11),December 1989
[2.3-1] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[2.4-1]Clifford R. Pollock “integrated photonics “school of electrical and computer engineering cornell university
[3.1-1] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.,44,p847-849(1984)
[3.1-2] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide second-harmonic generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
[3.1-3] [26] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of Laser diode light in a lithium niobate channel waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
[3.1-4] [27] M. Yamada, N. Nada, M. Saitoh and K. Watanabe,”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.,vol.62, p435-436(1993)
[3.1-5] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett.,vol.60, p2828-2830(1992)
[3.1-6]余兆陞,”以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究”中央大學碩士論文,DOP(2007)
[3.1-7] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)
[4.1-1] Yuri Korkishko, Vyacheslav Fedorov, Sergey Kostritskii, Evgeny Maslennikov, Marina Frolova, Alexander Alkaev “Optical and Structural Properties of Proton Exchanged MgO:LiNbO3 waveguides
[4.1-2] R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B, 36, p143-147 (1985)
[4.1-3]” Active multi-channel narrowband wavelength filters and mode converters in Ti:PPLN waveguides”中央大學光電科學研究所碩士論文, 黃俊育, 中華民國九十五年十月
[4.2-1] J.R. Schwesyg • M.C.C. Kajiyama • M. Falk • D.H. Jundt • K. Buse • M.M. Fejer Appl Phys B (2010) 100: 109–115
指導教授 陳彥宏(Yen -Hung Chen) 審核日期 2011-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明