博碩士論文 972206054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.17.74.227
姓名 顏仲祺(Zhong-Qi Yan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於D形光纖之拉曼感測器模擬與設計
(The design and simulation of D-fiber based Raman sensor)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文設計D-fiber的結構,探討532nm的雷射光以SMF-28基模入射並經過此D-fiber結構以後,能夠讓收光系統收到最佳之拉曼訊號。模擬中首先藉由改變銀膜厚度,定出最佳鍍膜厚度為10nm,接著改變研磨深度,並且探討在不同包覆層材質的影響下,包含了空氣、水、熔融石英(Fused silica)、聚乙烯醇(Polyvinyl alcohol)增強係數的分布。最後我們也計算實際系統架設下,各種包覆層及研磨深度相對應拉曼訊號之大小,藉由這些計算結果來評估最佳化的拉曼訊號,以及系統之效率,並與實驗做對照,同時也提出未來之改進。
摘要(英) In this study, we analyze the Raman signal from the platform constructed by D-fiber structure. In the simulation, we find the optimal thickness of 10nm which gives the highest Raman enhancement. Besides, the enhancement factor was calculated under various conditions such as the polished depth and the refractive index of the overclad materials. Finally, realistic power of requirement was estimated taking into account of the detection limit to our instruments.
關鍵字(中) ★ D型光纖拉曼感測器
★ 拉曼散射
★ 增強係數
★ 研磨參數
關鍵字(英) ★ D-fiber based Raman sensor
★ Raman scattering
★ Enhancement factor
★ Polishing parameter
論文目次 中文摘要..........................................................I Abstract.........................................................II
致謝.............................................................III
目錄..............................................................IV
圖目錄...........................................................VI
表目錄..........................................................VII
第一章:導論......................................................1
前言...............................................................1
1.1波導耦合結構....................................................2
1.2側磨光纖的發展..................................................3
1.2.1側磨光纖......................................................3
1.2.2光纖極化器....................................................4
1.2.3光纖感測器....................................................5
1.2.4光纖感測器的缺點..............................................6
1.3拉曼散射........................................................7
1.3.1拉曼訊號的增強機制............................................9
1.3.2拉曼訊號的量測...............................................10
1.3.3拉曼訊號與D-fiber平台的結合.................................11
1.4研究動機..................... .................................12
1.5論文架構.......................................................13
第二章:原理及研究方法.........................................14
前言..............................................................14
2.1表面電漿理論...................................................14
2.1.1單介面之表面電漿共振.........................................15
2.1.2色散關係.....................................................16
2.1.3 介電質-金屬-介電質結構.......................................18
2.2 光束傳遞法BPM.................................................19
2.3 Lorentz-Drude Model............................................22
2.4增強係數........................................................24
第三章:模擬之設計及參數..................................26
第四章:結果與討論........................................36
4.1入射場之場型...................................................36
4.2金屬厚度對於D-fiber之影響.....................................37
4.3研磨深度對D-fiber之影響.......................................39
4.4系統架設的評估...............................................42
4.5表面覆蓋層材質對於D-fiber之影響................................46
第五章:結論及未來展望.........................................48
參考文獻...........................................................49
參考文獻 [1]R. W. Wood,“On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Philos. Mag. 4, 396, 1902.
[2]U. Fano,“ The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves),” J. Opt. Soc. Am. 31, 213, 1941.
[3]Hessel, and A. A. Oliner, “ A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt., 4, 1275, 1965.
[4]Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Physik 216, 398, 1968.
[5]E. Kretschmann, "Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberfldchenplasmaschwingungen," Z. Physik 241, 313, 1971.
[6]C. Nylander, B. Liedberg, and T. Lind, “Gas Detection by Means of Surface Plasmon Resonance,” Sens. and Actuators, 3,79,1982.
[7]R. A. Bergh, G. Kotler, and H. J . Shaw, “Single Mode Fiber Optic Directional Coupler,” Electron. Lett., 16, 260, 1980.
[8]S. K.Sheem, , and T. G. Giallorenzi, “Single-Mode Fiber-Optical Power Divider: Encapsulated Etching,” Opt. Lett., 4, 29, 1979.
[9]R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “Single-Mode Fiber-Optic Polarizer,” Opt. Lett., 5, 479, 1980.
[10]W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface Plasmon Polaritons in Thin Metal Films and Their Role in Fiber Optic Polarizing Devices,” I. J. Light. Tech., 8, 4, 1990.
[11]R. C. Jorgenson, and S. S. Yee,“A Fiber-Optic Chemical Sensor Based on Surface Plasmon Resonance,” Sens. and Actuators B, 12, 213, 1993.
[12]曹庄琪, “導波光學中的轉移矩陣方法,” 上海交通大學出版社,2002年10月.
[13]陳芳永, “是誰先觀測到拉曼散射?,” 物理雙月刊21卷5期, 1999年10月.
[14]T. Vosgröne , A.J. Meixner “Surface- and Resonance-Enhanced Micro-Raman Spectroscopy of Xanthene Dyes: from the Ensemble to Single Molecules,” ChemPhysChem.,6, 154, 2005.
[15]J. F. ,Li, Y.F. Huang,Y. Ding, et al. “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature, 464, 392, 2009.
[16]U. Kumar Sur “Surface-Enhanced Raman Spectroscopy Recent .Advancement of Raman Spectroscopy,” Resonance , 15, 154. 2010.
[17]P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne“Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal.Chem. , 1, 601, 2008.
[18]M. Fleischmann, P. J. Hendra, A. C. Mcquillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett, 26, 2, 1974.
[19]D. L. Jeanmaire, R. P. Van Duyne, “Surface Raman Spectroelectrochemistry,” J. Electron. Chem. , 84, 1, 1977.
[20]李正中, ”薄膜光學與鍍膜技術6th,” 藝軒出版.2009年
[21]J.T. Bahns, F. Yan, D. Qiu, R. WANG, and L. CHEN “Hole-Enhanced Raman Scattering,” Appl. Spectrosc., 60, 989, 2006.
[22]R. M. Stöckle, Y. D. Suh, V. Deckert , R. Zenobi “ Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy,” Chem. Phys. Lett., 318, 131, 2000.
[23]J. F. Li1, Y. F. Huang, Y.Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan1, W. Zhang,Z. Y. Zhou, D.Y. Wu, B. Ren, Z. L. Wang & Z. Q. Tian “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature Lett., 464, 2010.
[24]Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang “Surface-Enhanced Raman Scattering Sensor Based on D-shaped Fiber,” Appl. Phys. Lett. 87, 123105 , 2005.
[25]W. P. Huang, Member, IEEE, and C. L. Xu,“Simulation of Three-Dimensional Optical Waveguides by a Full-Vector Beam Propagation Method,” IEEE J. Quan.Elec., 29, 2639, 1993.
[26]K. Kawano, T. Kitoh “Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation,” J. Wiley, 2002.
[27]G. Lifante,“Integrated Photonics : Fundamentals,” J. Wiley, 2003.
[28]D. Rakic´ , A. B. Djuriš ic´ , J. M. Elazar, and M. L. Majewski“ Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Appl. Opt., 37, 5271, 1998.
[29]H. Malitson "Interspecimen Comparison of the Refractive Index of Fused Silica". J.O.S.A., 55, 1205, 1965.
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2013-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明