博碩士論文 972206062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.206.48.142
姓名 葉佳良(Chia-Liang Yeh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
(Photoluminescence imaging for excess carrier lifetime and series resistance measurement in silicon solar cells)
相關論文
★ 膜堆光學導納量測儀★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究
★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究
★ 以奈米壓印改善陽極氧化鋁週期性★ 含氫矽薄膜太陽電池材料之光電特性研究
★ 自我複製結構膜光學性質之研究★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究
★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究★ 以奈米小球提升矽薄膜太陽能電池吸收之研究
★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 科技的發展帶來能源耗竭的問題,太陽能電池為未來的替代性能源之一,目前太陽能電池的成本較其他能源昂貴,所以太陽電池技術的發展有三個主要準則:效率要高、生產成本要低、可靠度及穩定度要好。為了降低成本,確保電池的良率與使用壽命,使得近年來太陽能電池的量測扮演著很重要的角色,光激發光則為近年迅速發展的技術。本文使用光激發光影像技術,分別量測額外載子生命期與串聯電阻,由於一般使用光激發光量測時,入射光與試片間的角度傾斜,使得入射光不均勻,造成量測的誤差,本研究提出Pixel-by-Pixel的演算法,解決了入射光不均勻所造成的誤差。計算單晶矽太陽能電池時,平均額外載子生命期約為1.0´10-4秒,將量測時的標準差代入近算,可知這個方法的誤差為3.4´10-6秒,大約3.4%。為驗證這個方法的正確性,分別使用平均入射光強度0.069 W/cm2、0.081 W/cm2所量到的額外載子生命期,相除的結果平均值為1.0958,標準差為0.1366。我們也將這個方法應用在多晶矽太陽能電池,量測出的額外載子生命期約為2.0´10-5秒。
在計算串聯電阻方面,一般假設電流均勻分佈,本研究連結了螢光影像與電流的關係,可測量電流的分佈。此外,本研究提出新的量測方法,以0.45 W/cm2做為強光照,分別以0.11 W/cm2、0.09 W/cm2與0.068 W/cm2三種不同的入射光強度做為弱光照,量測串聯電阻後,每個像素相除的平均值分別為1.046、1.01和1.046,標準差分別為0.18、0.23與0.27,大致為1,證明了此法的正確性,經推導發現本研究所提出的方法為計算串聯電阻的通解,而一般的方法則是在計算串聯電阻時,特定條件下(入射光很弱,使得串聯電壓與端電壓相比可略)的特解。
摘要(英) Technological developments brought up the issue of energy depletion, as the result, solar cells become one of alternative sources of energy. The cost of solar cell is relatively expensive compared to other energy sources. Therefore, solar technology development needs to meet three main criteria, higher efficiency, lower production costs, reliability and stability. In order to reduce costs, it is necessary to ensure the service life and the quality by using solar cells measurement. As the result, photoluminescence has become one of the fastest developing technologies for solar cells measurement in recent years. That photoluminescence technology produces when measuring excess carrier life time and series resistance. Pixel-by-pixel algorithm was developed to obtain solar cell excess carrier lifetime. This method handles the solar cell photoluminescence imagine signal excited by non-uniformly illumination. We obtained the excess carrier lifetime over the entire measured area about 1.0?10-4 sec with uncertainty about 3.4?10-6 sec in single crystalline silicon solar cell. We choose two incident light intensity at 0.069 W/cm2 and 0.081 W/cm2 obtained almost identical excess carrier lifetime distribution. By dividing the excess carrier lifetime pixel-by-pixel of these two set of data, we obtained average value of the ratio is about 1.10?0.14 which confirm the validation of this algorithm. We also use this method on poly crystalline silicon solar cell and obtained the excess carrier lifetime over the entire measured area about 2.0?10-5 sec.
In series resistance, typically assume that the current is uniform distribution. This article links the photoluminescence and current relationship, that current distribution become measurable. In addition, the study proposes a new measurement method to calculate series resistance, and confirm the validity of this method by measure same solar cell on different incident light intensity. We measuring series resistance use the 0.45 W/cm2 as a strong light, 0.11 W/cm2, 0.09 W/cm2 and 0.068W/cm2 respectively as a weak light. Divide the value of each pixel we get mean value respectively is 1.046?0.18, 1.01?0.23 and 1.046? 0.27, which confirm the validity of this method. We also find that the method is the general solutions for calculate the series resistance. Typically method is the solutions which under the specific conditions (when the incident light is so week that compared to terminal voltage, series voltage can be ignored).
關鍵字(中) ★ 光激發螢光
★ 串聯電阻
★ 載子生命期
關鍵字(英) ★ photoluminescence
★ carrier lifetime
★ series resistance
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
圖 目 錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究背景 3
1-3 研究動機 5
1-4 論文架構 6
第二章 實驗原理 7
2-1 太陽能電池原理 7
2-2 光激發螢光原理 8
2-3 額外載子生命期原理 12
2-3-1 額外載子產生率 13
2-3-2額外載子複合率 14
2-3-3額外載子濃度 15
2-3-4輻射複合係數B(T) 17
2-3-5 van Roosbroeck-Shockly 模型 18
2-3-6 pixel-by-pixel演算法 20
2-4 串聯電阻 21
2-4-1 太陽能電池等效電路 22
2-4-2 光電壓 24
2-4-3 電流與螢光影像之關係 26
第三章 額外載子生命期 33
3-1 實驗設施要求與實驗架構 33
3-1-1實驗設施要求 33
3-1-2實驗架構 34
3-2 實驗步驟 35
3-2-1 實驗流程 35
3-2-2數據處理 35
3-2-3結果與討論 37
第四章 串聯電阻 44
4-1實驗架構 44
4-2 實驗步驟 45
4-2-1 實驗流程 45
4-2-2 數據處理 45
4-2-2-1 串聯電壓 45
4-2-2-2 串聯電流 45
4-2-3結果與討論 49
第五章 結論 66
第六章 未來工作 68
參考文獻 69
參考文獻 [1]http://www.globalwarming.org.tw,'http://www.globalwarming.org.tw'.
[2]L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato and R. Martins,'Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell' Solar Energy Materials and Solar Cells 87, 349-355 (2005).
[3]黃冠禎,'太陽能的發展與應用' 中山工商 (2008).
[4]蔡進譯,'超高效率太陽電池-從愛因斯坦的光電效應談起' 物理雙月刊 廿七卷五期, P.702-P.719 (2005 年10 月).
[5]B. L. G. TamizhMani, T. Arends, J. Kuitche, B. Raghuraman, W. Shisler, K. Farnsworth, J. Gonzales, & A. Voropayev,'Failure analysis of design qualification testing: 2007 vs. 2005' Photovoltaics International journal's (2008).
[6]彭成瑜、林福銘、黃振隆,'非破壞性缺陷檢測技術用於矽基太陽能電池與模組' 科儀新知 第三十一卷第三期, P.35-P.42 (98.12).
[7]R.A. Sinton, A. Cuevas and M. Stuckings,'Quasisteady-state photoconductance, a new method for solar cell material and device characterization' IEEE, P.457-460 (1996).
[8]M. Bail, M. Schulz and R. Brendel,'Space-charge region-dominated steady-state photoconductance in low-lifetime Si wafers' Applied Physics Letters 82, 757-759 (2003).
[9]P.J. Cousins, D.H. Neuhaus and J. E. Cotter,'Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements' Applied Physics Letters 95 (2005).
[10]M. Bail, J. Kentsch, R. Brendel and M. Schulz,'Lifetime mapping of Si Wafers by an Infrared Camera' IEEE, P99-103 (2000).
[11]J. Isenberg, S. Riepe, S. W. Glunz and W. Warta,'Imaging method for laterally resolved measurement of minority carrier densities and lifetimes: Measurement principle and first applications' Journal of Applied Physics 93, 4268-4275 (2003).
[12]Hamamatsu,'http://www.usa.hamamatsu.com/en/products/system-division/semiconductor-industry/failure-analysis/phemos-2000.php' (2000).
[13]V. J. Bruce,'Energy resolved emission microscopy' IEEE, P178-183 (1993).
[14]M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos and K. C. Fisher,'Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells' Journal of Applied Physics 100, - (2006).
[15]A. G. Chynoweth and K. G. McKay,'Photon Emission from Avalanche Breakdown in Silicon' Phys. Rev 102, 356 (1956).
[16]N. Khurana and C. L. Chiang,'Analysis of Product Hot Electron Problems by Gated Emission Microscop' IEEE, P189-194 (1986).
[17]T. Trupke, E. Daub and P. Wurfel,'Absorptivity of silicon solar cells obtained from luminescence' Solar Energy Materials and Solar Cells 53, 103-114 (1998).
[18]T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi and Y. Uraoka,'Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence' Applied Physics Letters 86 (2005).
[19]A. Perez-Rodriguez, A. Cornet, J. R. Morante, J. Jimenez, P. L. F. Hemment and K. P. Homewood,'Raman scattering and photoluminescence analysis of silicon on insulator structures obtained by single and multiple oxygen implants' Applied Physics Letters 70, 1678 (1991).
[20]E. Daub and P. Wurfel,'Ultralow Values of the Absorption-Coefficient of Si Obtained from Luminescence' Physical Review Letters 74, 1020-1023 (1995).
[21]N. Nobuhito, I. Satoshi and J. O. Tomoya,'Applied Physics Letters 86, 6000 (1999).
[22]M. Tajima, Z. Q. Li and R. Shimidzu,'Photoluminescence mapping system applicable to 300 mm silicon-on-insulator wafers' Japanese Journal of Applied Physics Part 2-Letters 41, L1505-L1507 (2002).
[23]M. Tajima,'Determination of Boron and Phosphorus Concentration in Silicon by Photo-Luminescence Analysis' Applied Physics Letters 32, 719-721 (1978).
[24]Y. Koshka, S. Ostapenko, J. Cao and J. P. Kalejs,'Room-temperature luminescence diagnostics in polycrystalline silicon' IEEE, P115-118 (1997).
[25]E. Daub, P. Klopp, S. Kugler and P. Würfel,'PVSEC 12th, P1772-1774 (1994).
[26]I. Tarasov, S. Ostapenko, K. Nakayashiki and A. Rohatgi,'Defect passivation in multicrystalline silicon for solar cells' Applied Physics Letters 85, 4346-4348 (2004).
[27]S. Ostapenko, I. Tarasov, J. P. Kalejs, C. Haessler and E. U. Reisner,'Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers' Semiconductor Science and Technology 15, 840-848 (2000).
[28]I. Tarasov, S. Ostapenko, V. Feifer, S. McHugo, S. V. Koveshnikov, J. Weber, C. Haessler and E. U. Reisner,'Defect diagnostics using scanning photoluminescence in multicrystalline silicon' Physica B-Condensed Matter 274, 549-552 (1999).
[29]G. Smestad and H. Ries,'Luminescence and Current Voltage Characteristics of Solar-Cells and Optoelectronic Devices' Solar Energy Materials and Solar Cells 25, 51-71 (1992).
[30]S. Tardon, M. Rosch, R. Bruggemann, T. Unold and G. H. Bauer,'Photoluminescence studies of a-Si : H/c-Si-heterojunction solar cells' Journal of Non-Crystalline Solids 338-40, 444-447 (2004).
[31]G. H. Bauer, K. Bothe and T. Unold,'Open circuit voltage from quasi-Fermi level splitting in polycrystalline Cu(In,Ga)Se2 films by photoluminescence with lateral sub-micron resolution' IEEE, P.700-703 (2002).
[32]R. A. Bardos, T. Trupke, M. C. Schubert and T. Roth,'Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers' Applied Physics Letters 88, - (2006).
[33]T. Trupke and R. A. Bardos,'Photoluminescence: A surprisingly sensitive lifetime technique' IEEE p. 903–906 (2005).
[34]T. Trupke, R. A. Bardos, M. D. Abbott and J. E. Cotter,'Suns-photoluminescence: Contactless determination of current-voltage characteristics of silicon wafers' Applied Physics Letters 87, - (2005).
[35]S. O. Kasap,'Optoelectronics and Photonics Principles and Practices' Prentice-Hall,Prentice-Hall, (2001).
[36]R. Huang and A. H. Kitai,'The Surface-Morphology of Atomic Layer Deposited Magnesia' Journal of Materials Science Letters 12, 1444-1446 (1993).
[37]H. Valladas, J. L. Joron, G. Valladas, B. Arensburg, O. Baryosef, A. Belfercohen, P. Goldberg, H. Laville, L. Meignen, Y. Rak, E. Tchernov, A. M. Tillier and B. Vandermeersch,'Thermo-Luminescence Dates for the Neanderthal Burial Site at Kebara in Israel' Nature 330, 159-160 (1987).
[38]Z. C. Feng, S. Perkowitz, D. K. Kinell, R. L. Whitney and D. N. Talwar,'Compositional Dependence of Optical-Phonon Frequencies in Alxga1-Xas' Physical Review B 47, 13466-13470 (1993).
[39]K. D. Mielenz, V. R. Weidner and R. W. Burke,'Heterochromatic Stray Light in Uv Absorption Spectrometry - a New Test Method' Applied Optics 21, 3354-3356 (1982).
[40]G. Bastard,'Optical Studies of Gaas Quantum Wells' Journal of Luminescence 40-1, 33-36 (1988).
[41]謝嘉民, 賴一凡, 林永昌 and 枋志堯,'Photoluminescence: Principles, Structure,and Applications' 奈米通訊 第十二卷第二期, P28-39 (2008).
[42]J. Wagner and L. Vina,'Radiative Recombination in Heavily Doped P-Type Germanium' Physical Review B 30, 7030-7036 (1984).
[43]S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe and R. Brendel,'Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon' phys. stat. sol. (RRL), 1-3 (2008).
[44]A. Tokmakoff,MIT Department of Chemistry (2007).
[45]G. Marx,'Selection rules in the one K meson theory' Physical Review B 7 (1957).
[46]E. F. Schubert,'Light Emitting Diodes and Solid-state Lighting' Cambridge,Cambridge University Press, (2006).
[47]Kasemann, W. K. M., M.C. Schubert, H. Habenicht, B. Walter, M. The, S. Kontermann, S. Rein, O. Breitenstein, J. Bauer, A. Lotnyk, B. Michl, H. Nagel, A. Schütt, J. Carstensen, H. Föll, T. Trupke, Y. Augarten, H. Kampwerth, R.A. Bardos, S. Pingel, J. Berghold, W. Warta and S. W. Glunz.,'IEEE (2008).
[48]J. Xue, S. Uchida, B.P. Rand and S.R. Forrest,'Organic Small Molecule Solar Cells with a Homogenously Mixed Copper Phthalocyanine:C60 Active Layer' Applied Physics Letters 84 (2004).
[49]D. A. Neamen,'Semiconductor Physics And Devices',McGraw-Hill (2003).
[50]H. Hoppe and N. S. Sariciftci,'Organic solar cells: An overview' Journal of Materials Research 19, 1924-1945 (2004).
指導教授 陳昇暉、鍾德元
(Sheng-hui Chen、Te-yuan Chung)
審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明