博碩士論文 972206069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:34.228.229.51
姓名 陳建嘉(Chien-Chia Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽基板上的氮化鎵異質磊晶術
(Nanoheteroepitaxial growth of GaN on Si substrates)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
★ 氮化物表面電漿生醫感測之理論分析★ 以氮化物表面電漿結構研製的生醫感測微晶片
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用有機金屬氣相沉積法在矽基板上成長氮化鎵,並使用氧化鋅奈米線陣列當作緩衝層。氮化鎵與氧化鋅,晶格差異只有1.85%,而氧化鋅奈米陣列能有效減少氮化鎵磊晶層的應力能量。本研究的動機在實現低成本、大面積、高品質的新世代氮化鎵晶體。然而,以氧化鋅奈米線陣列在矽基板上成長氮化鎵仍有很多挑戰,例如:氫氣蝕刻氧化鋅、氧化鋅在高溫下的不穩定性、氮化鎵磊晶層癒合困難.....等。
氧化鋅奈米線製造過程主要有兩個步驟:(1)氧化鋅薄膜的沉積。(2)水熱法合成。我們利用磁控濺鍍機,濺鍍有特定結構的氧化鋅薄膜在矽基板上,此氧化鋅薄膜對奈米線的幾何型態相當重要。我們發現,氧化鋅薄膜的退火條件,可以控制氧化鋅奈米線的型態,例如:直徑、密度、形狀、垂直排列。退火後的氧化鋅薄膜具有較一致的C軸取向,以及較低的表面粗糙度,這將導致氧化鋅奈米線陣列的成長,具有高密度、高垂直的特性。
在氮化鎵的磊晶過程中,我們先在低溫(< 600 °C)、氮氣的環境中,成長氮化鎵磊晶層來包覆氧化鋅奈米柱,以預防氫氣的蝕刻。接著,再將氮化鎵的成長溫度拉高至950 °C,以橫向連接每根奈米柱,並進一步保護氧化鋅奈米柱。最後,將溫度提升至1120 °C,並在氫氣的環境中成長高品質的氮化鎵單晶。在成長高溫的氮化鎵前,我們先利用一層氮化鋁薄膜來幫助氮化鎵的癒合。雖然高溫的氮化鎵磊晶層厚度可達2 μm,且不會有剝離、龜裂的現象,但氮化鎵磊晶層還是無法完全癒合。未來,我們將繼續優化各磊晶層的成長條件,例如:成長時間、五三比、腔體壓力等等,希望能進一步提升氮化鎵磊晶層的表面平整度。
摘要(英) GaN was grown on Si with the buffer layer of ZnO nanorods arrays (ZnO NRAs) by metalorganic chemical vapor deposition (MOCVD). The lattice mismatch between GaN and ZnO is only 1.85% and the ZnO NRAs buffer is employed to reduce strain energy in the epilayer. We aim to achieve the next-generation GaN crystal with advantages of low cost, large scale, and high qualities. Nevertheless, many challenges remain to be overcome, such as H2 back-etching of ZnO NRAs, thermal decomposition of ZnO, the difficult coalesce of GaN, etc.
The major fabrication procedure of ZnO NRAs consists of two steps: (1) ZnO seed layer deposition (2) hydrothermal process (HTP). The textured ZnO film was deposited on Silicon (100) substrates by radio-frequency sputter (RF-Sputter). Post-annealing of the sputtered ZnO layer is found be vitally important to the morphology of ZnO NRAs, such as diameters, densities, shapes, and tilting angles.
In the growth of GaN, low-temperature (< 600 °C) GaN (LT-GaN) in N2 ambiance is adopted to form the ZnO-GaN core-shell structure in order to prevent the back etching of NRAs at high temperatures. The growth temperature of GaN is then raised to 950 °C to horizontally connect every nanorod and to provide further protection of ZnO. Finally, high-quality GaN is grown at 1120 °C in H2. Before the growth of high-temperature GaN (HT-GaN), a thin layer of high-temperature (also at 1120 °C) AlN (HT-AlN) is used to assist the coalescence of GaN. Although the HT-GaN epilayer reaches the thickness of 2 μm without showing peeling-off and cracks, the crystal still remains uncoalescent. In the Future, optimization of the growth parameters for each layer, including duration, V/III ratios and reactor pressure, should be performed in order to improve the surface morphology of GaN grown with this novel technology.
關鍵字(中) ★ 奈米異質磊晶
★ 氧化鋅奈米線
★ 氮化鎵
關鍵字(英) ★ Nanoheteroepitaxy
★ ZnO nanorods
★ GaN
論文目次 摘要 ...................................................................i
ABSTRACT ..............................................................iii
致謝 ...................................................................v
TABLE OF CONTENT .....................................................vi
LIST OF TABLES .........................................................ix
LIST OF FIGURES .......................................................x
LIST OF SYMBOLS .....................................................xii
1. Introduction......................................................1
1.1 Why GaN on Si ?......................................................................1
1.2 Current status of GaN on Si..........................................................2
1.3 The theory of nanoheteroepitaxy....................................................3
1.3.1 Heteroepitaxy.................................................................3
1.3.2 Nanoheteroepitaxy............................................................4
1.3.2.1 Serge Luryi and Ephraim Suhir Model (L-S Model).....................5
1.3.2.2 Zubia and Hersee Model (Z-H Model)..................................5
1.4 ZnO nanostructures: the promising buffer for GaN on Si.............................6
1.5 Motivation and thesis overview......................................................6
2. The fabrication of ZnO NRAs.......................................13
2.1 Introduction........................................................................13
2.2 Experiment.......................................................................13
2.2.1 Deposition of ZnO seed layer...............................................13
2.2.2 Post-annealing ZnO film....................................................14
2.2.3 Hydrothermal Process......................................................14
2.3 Discussion and Analysis...........................................................15
2.3.1 Chemical reaction and growth mechanism.................................15
2.3.2 Structural characterization of Seed Layer...................................17
2.3.2.1 Analysis of XRD....................................................17
2.3.2.2 Analysis of AFM...................................................17
2.3.3 Morphology of ZnO NRAs...................................................18
2.4 Summary........................................................................18
3. GaN on Si with the buffer layer of ZnO NRAs.........................28
3.1 Issues of GaN on ZnO by MOCVD...........................................28
3.2 Experiment and Analysis.....................................................29
3.2.1 The buffer layer of ZnO NRAs.........................................29
3.2.2 LT-GaN/LT-AlN/ZnO NRAs.............................................30
3.2.3 LT-GaN/ZnO NRAs......................................................31
3.2.4 Gradual-GaN/LT-GaN/ZnO NRAs.....................................32
3.2.5 HT-GaN/HT-AlN/Gradual-GaN/LT-GaN/ZnO NRAs.................33
3.3 Summary.......................................................................34
4. Conclusion and future work........................................44
Reference..........................................................45
參考文獻 [1]A. Krost, and A. Dadgar, “GaN-Based Devices on Si”, phys. Stat. sol. (a), vol 194, pp.361 ,
2002
[2]H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars, and J. A. Freitas, “Metalorganic chemical vapor deposition of GaN on Si(111): Stress control and application to field-effect transistors”, J. Appl. Phys., vol 89, 7846, 2001.
[3]H. Ishigawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, ” High-Quality GaN on Si Substrate Using AlGaN/AlN Intermediate Layer”, phys. stat. sol. (a), vol 176, pp.599, 1999
[4]H. Ishigawa, G.-Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN on Si Substrate with AlGaN/AlN Intermediate Layer”, Jpn. J. Appl. Phys., vol 38, pp.L492, 1999
[5]M. H. Kim, Y-G. Do, H. C. Kang, D. Y. Noh, and S.-J. Park, ”Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition”, Appl. Phys. Lett., vol 79, pp.2713, 2001
[6]E. Feltin, B. Beaumont, M. Lau¨ gt, P. de Mierry, P. Venne´gue`s, M. Leroux, and P. Gibart, “Crack-Free Thick GaN Layers on Silicon (111) by Metalorganic Vapor Phase Epitaxy”, phys. stat. sol (a), vol 188, pp.531, 2001
[7]E. Feltin, S. Dalmasso, P. de Mierry, B. Beaumont, H. Lahre`che, A. Bouille´, H. Haas, M. Leroux, and P. Gibart, “Green InGaN Light-Emitting Diodes Grown on Silicon (111) by Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., vol 40, pp.L738, 2001
[8]E. Feltin, B. Beaumont, M. Lau¨ gt, P. de Mierry, P. Venne´gue`s, H. Lahre`che, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., vol 79, pp.3230, 2001
[9]H. P. D. Schenk, E. Feltin, M. Vaille, P. Gibart, R. Kunze, H. Schmidt, M. Weihnacht, and E. Doghe`che, “Acoustical and Optical Gallium Nitride Waveguides Grown on Si(111) by Metalorganic Vapor Phase Epitaxy”, phys. stat. sol. (a), vol 188, pp.537, 2001
[10]M. Iwaya, S. Terao, N. Hayashi, T. Kashima, H. Amano, and I. Akasaki, “Realization of crack-free and high-quality thick AlxGa1−xN for UV optoelectronics using low-temperature interlayer”, Appl. Surf. Sci., vol 159–160, pp.405, 2000
[11]A. Reiher, J. Bläsing, A. Dadgar, A. Diez, A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers”, J. Cryst. Growth, vol 248, pp.563, 2003
[12]P. R. Hageman, S. Haffouz, V. Kirilyuk, A. Grzegorczyk, and P. K. Larsen, “High Quality GaN Layers on Si(111) Substrates: AlN Buffer Layer Optimisation and Insertion of a SiN Intermediate Layer”,phys. stat. sol. (a), vol 188, pp.523, 2001
[13]A. Dadgar, M. Poschenrieder, O. Contreras, J. Christen, K. Fehse, J. Bla¨ sing, A. Diez, F. Schulze, T. Riemann, F. A. Ponce, and A. Krost, “Bright, Crack-Free InGaN/GaN Light Emitters on Si(111)”,phys. stat. sol. (a), vol 192, pp.308, 2002
[14]T. Wang, Y. Morishima, N. Naoi, and S. Sakai, “A new method for a great reduction of dislocation density in a GaN layer grown on a sapphire substrate”, J. Cryst. Growth, vol 213, pp.188 2000
[15]S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy”, Appl. Phys. Lett., vol 78, pp.288, 2001
[16]S. Zamir, B. Meyler, and J. Salzman, “Lateral confined epitaxy of GaN layers on Si substrates”,J. Cryst. Growth, vol 230, pp.341, 2001
[17]S. Zamir, B. Meyler, J. Salzman, F. Wu, and Y. Golan, “Enhanced photoluminescence from GaN grown by lateral confined epitaxy”, J. Appl. Phys. Lett., Vol 91, pp.1191, 2001
[18]Y. Honda, Y. Kuroiwa, M. Kawaguchi, and N. Sawaki, “Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vapor-phase epitaxy”, Appl. Phys. Lett., vol 80, pp.222 2002
[19]A. Dadgar, A. Alam, T. Riemann, J. Bla¨ sing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, “Crack-Free InGaN/GaN Light Emitters on Si(111)”, phys. stat. sol. (a), vol 188, pp.155, 2001
[20]A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Bla¨ sing, A. Diez, A. Krost, A. Alam, and M. Heuken, “Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si(111): Impact of an AlGaN/GaN multilayer”, Appl. Phys. Lett., Vol 78, pp.2211, 2001
[21]A. Dadgar, C. Humsa,A. Dieza, F. Schulzea, J. Bläsinga, and A. Krost, “Epitaxy of GaN on large substrate: Si or sapphire?”, Proc. of SPIE, vol 6355, pp.63550R-1
[22]http://www.bridgelux.com
[23]Ayers, John E,” Heteroepitaxy of semiconductors”, p161
[24]Ayers, John E,” Heteroepitaxy of semiconductors”, p164
[25]S. Luryi, and E. Suhir, Appl. Phys. Lett. 49 140 (1986)
[26]E. Suhir, J. Appl. Mech. 53 657 (1986)
[27]D. Zubia, and S. D. Hersee, “Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials”, J. Appl. Lett., vol 85, pp.6492, 1999
[28]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Y. Angew, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Chem. Int. Ed., vol 42, pp.3031, 2003
[29]J.W. Lee, S.W. Park, and J.B. Yoo, “The Application of a Low Temperature GaN Buffer Layer to Thick GaN Film Growth on ZnO/Si Substrate”, Phys. Stat. sol. (a), vol 176, pp.583, 1999
[30]Ayers, John E, “Heteroepitaxy of semiconductors”, p392
[31]D. Zubia, S. H. Zaidi, S. D. Hersee, and S. R. J. Brueck, “Nanoheteroepitaxy: Nanofabrication route to improved epitaxial growth”, J. Vacc. Sci. Technol. B, vol 18, pp.3514, 2000
[32]H. Wang, Z. P. Zhang, X. N. Wang, Q. Mo, Y. Wang, J. H. Zhu, H. B. Wang, F. J. Yang, Y. Jiang, “Selective Growth of Vertical-aligned ZnO Nanorod Arrays on Si Substrate by Catalyst-free Thermal Evaporation”, Nanoscale Res. Lett., vol 3, pp.309, 2008
[33]M. Guo, P. Diao and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions”, J. Solid Stat. Chem., vol 178, pp.1864-1873, 2005
[34]T. Ma, M. Guo, M. Zhang, and Z. wang, “The Effect of the Texture and the Density of ZnO Seed Layer on the Orientation of ZnO Nanorod Arrays”, J. Nanosci. Nanotechnol., vol 9, pp.5920-5926, 2009
[35]Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings”, Energy Environ. Sci., vol 4, pp.3436-3441, 2011
[36]K. S. Ranjith, R. Pandian, G. Natarrajan, M. Kamruddin, R. T. Rajendrakumar, “Optimisation on the Growth and Alignment of ZnO Nanorods”, Adv. Mater. Res., vol 584, pp.319-323, 2012
[37]J. Song, S. Baek, J. Lee, and S. Lim, “Role of OH− in the low temperature hydrothermal synthesis of ZnO nanorods”, J. Chem. Technol. Biotechnol., vol 83, pp.345-350, 2008
[38]J. Liu, J. She, S. Deng, J. Chen, and N. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics”, J. Phys. Chem. C, vol 112, pp.11685-11690, 2008
[39]L. W. Ji, S. M. Peng, J. S. Wu, W. S. Shih, C. Z. Wu, I. T. Tang, “Effect of seed layer on the growth of well-aligned ZnO nanowires”, J. Phys. and Chem. Sol., vol 70, pp.1359-1362, 2009
[40]A. R. Kim, J. Y. Lee, B. R. Jang, H. S. Kim, H. K. Park, Y. J. Cho, and N. W. Jang, “Effect of Post Annealing of ZnO Buffer Layer on the Properties of Hydrothermally Grown ZnO Nanorods”, Jpn. J. Appl. Phys., vol 49, pp.06GH10, 2010
[41]Y. Shi, Z. Yang, H. Cao, and Z. Liu, “Controlled c-oriented ZnO nanorod arrays and m-plane ZnO thin film growth on Si substrate by a hydrothermal method”, J. Cryst. Growth, vol 312, pp.568-572, 2010
[42]H. Ghayour, H. R. Rezaie, S. Mirdamadi, A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods”, Vaccum, vol 86, pp.101-105 2011
[43]G. J. Lee, S. Ki. Min, C. H. Oh, Y. P. Lee, H. Cheong, H. J. Nam, C. K. Hwangbo, S. K. Min, and S. H. Han, “Effects of Seed Layers on Structural, Morphological, and Optical Properties of ZnO Nanorods”, J. Nanosci. Nanotechnol., vol 11, pp.511-517, 2011
[44]D. S. Kang, H. S. Lee, S. K. Han, V. Srivastava, E. S. Babu, S. K. Hang, M. J. Kim, J. H. Song, H. Kim, and D. Kim, “Growth and optical properties of ZnO nanorods prepared through hydrothermal growth followed by chemical vapor deposition”, J. Alloys and Compounds, vol 509, pp.5137-5141, 2011
[45]F. Solis-Pomar, E. Martinez, M. F Melendrez, and E. Perez-Tijerina, “Growth of vertically aligned ZnO nanorods using textured ZnO films”, Nano. Res. Lett., vol 6, pp.524, 2011
[46]N. Li, “GaN on ZnO: A NEW APPROACH TO SOLID STATE LIGHTING”, Georgia Institute of Technology, 2009
[47]C. C. Lin, H. C. Liao, and S. Y. Chena, “Luminescent and structural characteristics of ZnO nanorods fabricated by postannealing”, J. Vac. Sci. Technol. B, vol 24, pp.304, 2006
[48]N. Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson, “Growth of GaN on ZnO for Solid State Lighting Applications”, Proc. of SPIE, vol 6337, pp.63370Z-1, 2006
[49]H. Yoo, K. Chung, Y. S. Choi, C. S. Kang, K. H. Oh, M. Kim, and G. C. Yi, “Microstructures of GaN Thin Films Grown on Graphene Layers”, Adv. Mater., vol 24, pp.515-518, 2012
[50]H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., vol 48, pp.353, 1986
[51]S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., vol 30, pp.L1705, 1991
[52]S. D. Hersee, J. Ramer, K. Zheng, C. Kranenberg, K. Malloy,M. Banas, M. Goorsky, “Effects of H2/NH3 Flow-Rate Ratio on the Luminescent, Structural, and Electrical Propertiesof GaN Epitaxial Layers Grown by MOCVD”, J. Electron. Mater, vol 24, pp.1519, 1995
[53]H. Yu, S. Wang, N. Li, W. Fenwick, A. Melton, Matthew H. Kane, B. Klein, and l. Ferguson, “MOVPE growth of AlGaN/GaN superlattices on ZnO substrates for green emitter applications”,Proc. of SPIE, vol 7058, pp.70580V-1, 2008
[54]T. Suzuki, C.Harada, H. Goto, T. Minegishi, A. Setiawan, H. J. Ko, M. W. Cho, and T. Yao, “Relation between interdiffusion and polarity for MBE growth of GaN epilayers on ZnO substrates”, Current Appl. Phys., vol 4, pp.643-646, 2004
[55]R. M. Lin, S. F. Yu, M. J. Chen, and W. C. Hsu, “Original GaN-based LED structure on ZnO template by MOCVD”, Proc. of SPIE, vol 7602, pp.7602L-1, 2013
指導教授 賴昆佑(Ku-Yu Lai) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明