博碩士論文 972211002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.138.114.94
姓名 蔡承遠(Cheng-yuan Tsai)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 以CRSBP-1接合子調控巨噬細胞的移動及吞噬
(Regulation of Macrophage Migration and Phagocytosisby CRSBP-1 Ligands)
相關論文
★ 發展酵素非限制性全基因體調控因子解析方法★ 大腸癌細胞株之 EGFR—K-ras 訊號路徑的基因微陣列實驗 與化學基因體學分析
★ 小鼠胚胎幹細胞株之建立及人類誘導多能性幹細胞之培養技術★ 由神經生長因子誘導之細胞內訊號路徑活化的化學基因體學分析
★ 細胞週期蛋白D1 mRNA在小鼠胚胎及成體幹細胞和腫瘤細胞中的表現及其受多能性相關因子影響之探討★ 運用時間序列微陣列資料來預測調控基因
★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型★ 運用高通量基因微矩陣列方法解析由嗜鉻 細胞分化成神經細胞之全基因體的調控
★ 神經生長因子在神經分化中轉錄因子活性及基因調控機制之橫觀★ CRSBP-1調節淋巴管內皮細胞移動機制的角色及 其斑馬魚直系同源蛋白
★ Chemogenomic and Molecular Analysis of Signal Transduction Pathways in In Vivo and In Vitro Models★ 探討人類子宮內膜 L-selectin ligands 在月經週期的表現
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) CRSBP-1 是一種存在於細胞膜的受器。當生長因子(如:血小板生長因子-BB 型及血管生長因子-A 型)由培養的細胞株合成並分泌時,可被此蛋白調控固定於細胞表面。目前並不清楚CRSBP-1 的生理功能。在我們之前的研究,發現同時剔除CRSBP-1 與Apo E 基因的老鼠比只剔除Apo E 基因的老鼠,罹患動脈血管硬化疾病的機率為低,這個發現使我們懷疑CRSBP-1 在動脈血管硬化疾病上或許扮演重要的角色。已知巨噬細胞參與動脈血管硬化疾病的病理過程,且最近被發現巨噬細胞可以表現CRSBP-1,於是我們假設CRSBP-1 和其接合子在動脈血管硬化疾病形成過程中,調控巨噬細胞移動及吞噬功能。在此實驗,我們利用CRSBP-1 的接合子,包括血小板生長因子-BB 型及另外兩個特別的接合子(血小板生長因子-胜肽及血管生長因子-胜肽,專一地結合CRSBP-1,與血小板生長因子-BB 型及血管生長因子-A 型的接受器沒有交互作用),刺激RAW 264.7 類似巨噬細胞株及骨髓衍生巨噬細胞的移動及吞噬能力,然後分別以傷口癒合試驗、Boyden chamber 試驗及吞噬FITC-葡聚醣試驗測定,得出分別在5 和40 ng/mL、10 和20 uM 及10 μg/mL為最適合濃度,且血管生長因子-胜肽出比血小板生長因子-BB 型及血小板生長因子-胜肽有更好的效果,而這種效果可以被酪氨酸激酶抑制劑所抑制。結果表示CRSBP-1 接合子可以刺激巨噬細胞移動及吞噬能力,這或許在動脈血管硬化疾病扮演關鍵的角色。而CRSBP-1 的拮抗劑和血小板生長因子β 型激酶抑制劑,則可以治療和預防動脈血管硬化疾病。
摘要(英) CRSBP-1 is a membrane receptor which mediates the phenomenon of cell-surface retention of growth factors (e.g., PDGF-BB and VEGF-A) after synthesis and secretion in cultured cells. The physiological function of CRSBP-1 is unknown. In our recent studies, we found that CRSBP-1-/Apo E- mice have lower risk of atherosclerosis disease than CRSBP-1+/Apo E- mice. This finding suggests that CRSBP-1 may play an important role in the pathogenesis of atherosclerosis. Since macrophages are known to be involved in the pathogenesis of atherosclerosis and since CRSBP-1 has recently been found to be expressed in macrophages, we hypothesize that CRSBP-1 and its ligands regulate migration and phagocytosis of macrophages in the process of the atherosclerosis disease. Here we demonstrate that the ligands of CRSBP-1 such as PDGF-BB and two specific ligands (PDGF-peptide and VEGF-peptide which specifically bind to CRSBP-1 and do not interact with the respective growth factor receptors of PDGF-BB and VEGF-A) stimulate migration and phagocytosis in RAW 264.7 cells, a macrophage-like cell line, and bone marrow–derived macrophages (BMM) with the optimal concentrations of 5-40 ng/mL, 10-20 uM and 10 μg/mL, respectively . The migration and phagocytosis are determined by scratch and Boyden chamber assays, and by measuring FITC-dextran uptake, respectively. VEGF-peptide appears to be more potent than PDGF-BB and PDGF-peptide in stimulating macrophage migration and phagocytosis at their optimal concentrations. The effects of these CRSB-1 ligands can be abolished in the presence of a PDGF β-type receptor kianse inhibitor. These results suggest that CRSBP-1 ligand-stimulated migration and phagocytosis of macrophages may play a pivotal role in the pathogenesis of atherosclerosis. These results also suggest that CRSBP-1antasgonists and PDGF β-type kinase inhibitors have potential to be therapeutic agents for treating and preventing atherosclerosis.
關鍵字(中) ★ 吞噬
★ 巨噬細胞
★ 移動
關鍵字(英) ★ Phogocytic uptake
★ Boyden chamber
★ Phagocytosis
★ Migration
★ Macrophage
★ RAW 264.7
★ bone marrow–derived macrophage
★ LYVE-1
★ CRSBP-1
★ Scratch
論文目次 中文摘要 …………………………………………………………… i
Abstract ……………………………………………………………… ii
致謝 ………………………………………………………………… iii
Table of Contents …………………………………………………… iv
List of Figures ………………………………………………………… vi
Abbreviations ………………………………………………………… ix
1 Introduction ……………………………………………………… 1
1.1 Macrophage ………………………………………………… 1
1.1.1 Macrophage activation ……………………………… 2
1.1.1.1 Classically activated macrophages …………… 2
1.1.1.2 Alternatively activated macrophages ………… 3
1.1.2 Macrophage migration ……………………………… 4
1.1.3 Macrophage phagocytosis …………………………… 5
1.1.4 Macrophages are pivotal in the pathogenesis of
atherosclerosis …………………………………………5
1.2 Cell-surface retention sequences binding protein-1
(CRSBP-1) …………………………………………………6
1.2.1 PDGF and VEGF-peptides can be used to study the
biological function of CRSBP-1 ……………………6
1.2.2 Macrophage express CRSBP-1(LYVE-1) …………… 7
1.3 Specific aim ………………………………………………… 8
2 Materials and Methods …………………………………………… 9
2.1 Growth factors, peptides, chemicals and antibodies ………… 9
2.2 Cell-line culture …………………………………………… 9
2.3 Preparation of L929 conditioned medium ………………… 10
2.4 Mouse BMM isolation and culture ………………………… 10
2.5 Scratch assay ………………………………………………… 11
2.6 Boyden chamber assay ……………………………………… 11
2.7 Direct immunofluorescence staining for Fluorescence
Microscopy ………………………………………………12
2.8 Direct Immunofluorescence Staining for Flow Cytometry … 13
2.9 Flow cytometry assay ……………………………………… 13
2.10 Phogocytic uptake assay …………………………………… 13
2.11 Statistics …………………………………………………… 14
3 Results …………………………………………………………… 14
3.1 TNF-α, PDGF-BB, PDGF- peptide and VEGF-peptide
stimulate migration of RAW 264.7 cells …………………14
3.2 TNF-α, PDGF-BB, PDGF- peptide and VEGF-peptide
stimulate migration of bone marrow–derived macrophages
(BMM) ………………………………………………16
3.3 TNF-α, PDGF-BB, PDGF- peptide and VEGF-peptide
stimulate phagocytic uptake of FITC-dextran by RAW 264.7
cells ……………………………………………………17
4 Discussion ………………………………………………………… 17
Figures ………………………………………………………… 20
References …………………………………………………………… 50
參考文獻 1. Hanayama, R., et al., Identification of a factor that links apoptotic cells to phagocytes. Nature, 2002. 417(6885): p. 182-7.
2. Dannenberg, A.M., Jr., Cellular hypersensitivity and cellular immunity in the pathogensis of tuberculosis: specificity, systemic and local nature, and associated
macrophage enzymes. Bacteriol Rev, 1968. 32(2): p. 85-102.
3. Hirose, K., et al., Survival of Vi-capsulated and Vi-deleted Salmonella typhi strains in cultured macrophage expressing different levels of CD14 antigen. FEMS Microbiol
Lett, 1997. 147(2): p. 259-65.
4. Khazen, W., et al., Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Lett, 2005. 579(25): p. 5631-4.
5. Socinski, M.A., et al., Granulocyte-macrophage colony-stimulating factor induces the expression of the CD11b surface adhesion molecule on human granulocytes in vivo.
Blood, 1988. 72(2): p. 691-7.
6. M Stein, S.K., N Harris, S Gordon, Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic
macrophage activation. . Journal of Experimental Medicine, 1992. 176: p. 287-292.
7. J., B., Arteriosclerosis, Thrombosis, and Vascular Biology Vol. 23. 2003.
8. Erwei Song, a., Nengtai Ouyang, Markus Hörbelta, Balazs Antusa, Minghui Wang, Michael S. Exton, Influence of Alternatively and Classically Activated Macrophages on Fibrogenic Activities of Human Fibroblasts. Cellular Immunology, 2000. 204: p. 19-28.
9. Rudensky, K.H.A.Y., Lysosomal cysteine proteases regulate antigen presentation. Nature Reviews Immunology 2003. 3: p. 472-482.
10. Clifford V Harding*, L.R.a.M.J.W., Interaction of bacteria with antigen presenting cells: influences on antigen presentation and antibacterial immunity. Current Opinion in Immunology, 2003. 15: p. 112-119.
11. Carlo Chizzolini, R.R., Carmelina De Luca, Danielle Burger, Jean-Michel Dayer Th2 Cell Membrane Factors in Association with IL-4 Enhance Matrix Metalloproteinase-1
(MMP-1) While Decreasing MMP-9 Production by Granulocyte-Macrophage Colony-Stimulating Factor-Differentiated Human Monocytes. The Journal of Immunology, 2000. 164: p. 5952-5960.
12. DUFFIELD, J.S., The inflammatory macrophage: a story of Jekyll and Hyde. Clinical Science 2003. 104: p. 27-38.
13. Gordon, S., Alternative activation of macrophages. Nature Reviews Immunology, 2003. 3: p. 23-35.
14. Ma, J., et al., Regulation of macrophage activation. Cell Mol Life Sci, 2003. 60(11): p. 2334-46.
15. Mosser, D.M., The many faces of macrophage activation. Journal of Leukocyte Biology, 2003. 73: p. 209-212.
16. CAO Bin, G.Z., ZHU Yuanjue,XU Wenbing, The potential role of PDGF, IGF-1, TGF-β expression in idiopathic pulmonary fibrosis. Chinese Medical Journal, 2000. 113: p. 776-782.
17. Ramesh, G. and W.B. Reeves, TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest, 2002. 110(6): p. 835-42.
18. Pai, R., et al., Role of tumor necrosis factor-alpha on mesangial cell MCP-1 expression and monocyte migration: mechanisms mediated by signal transduction. J Am Soc Nephrol, 1996. 7(6): p. 914-23.
19. Aqel, N.M., et al., Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies. J Pathol, 1985. 146(3): p. 197-204.
20. Beranek, J.T., Identification of macrophages in vessel allograft atherosclerosis. Transplantation, 1991. 52(4): p. 757.
21. Bjorneboe, G.E., [The role of lipoproteins and macrophages in the development of atherosclerosis]. Tidsskr Nor Laegeforen, 1989. 109(2): p. 216-9.
22. Daoud, A.S., et al., Role of macrophages in regression of atherosclerosis. Ann N Y Acad Sci, 1985. 454: p. 101-14.
23. Day, A.J., Lipid metabolism by macrophages and its relationship to atherosclerosis. Adv Lipid Res, 1967. 5: p. 185-207.
24. Koren, E., et al., Possible role of macrophages in regression of atherosclerosis. Prog Lipid Res, 1991. 30(2-3): p. 237-43.
25. Schaefer, H.E., The role of macrophages in atherosclerosis. Haematol Blood Transfus, 1981. 27: p. 137-42.
26. Watanabe, T., et al., Role of macrophages in atherosclerosis. Sequential observations of cholesterol-stimulated rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody. Lab Invest, 1985. 53(1): p. 80-90.
27. Huang, S.S., et al., CRSBP-1/LYVE-l-null mice exhibit identifiable morphological and functional alterations of lymphatic capillary vessels. FEBS Lett, 2006. 580(26): p.
6259-68.
28. Banerji, S., et al., LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol, 1999. 144(4): p. 789-801.
29. Prevo, R., et al., Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem, 2001. 276(22): p. 19420-30.
30. Ji, R.C., Lymphatic endothelial cells, lymphangiogenesis, and extracellular matrix. Lymphat Res Biol, 2006. 4(2): p. 83-100.
31. Huang, S.S., et al., Cloning, expression, characterization, and role in autocrine cell growth of cell surface retention sequence binding protein-1. J Biol Chem, 2003. 278(44): p. 43855-69.
32. Carmeliet, P., Angiogenesis in health and disease. Nat Med, 2003. 9(6): p. 653-60.
33. Cao, R., et al., PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 2004. 6(4): p. 333-45.
34. Boensch, C., et al., Identification, purification, and characterization of cell-surface retention sequence-binding proteins from human SK-Hep cells and bovine liver
plasma membranes. J Biol Chem, 1995. 270(4): p. 1807-16.
35. Jeon, B.H., et al., Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res, 2008. 68(4): p. 1100-9.
36. Xu, H., et al., LYVE-1-positive macrophages are present in normal murine eyes. Invest Ophthalmol Vis Sci, 2007. 48(5): p. 2162-71.
37. Maruyama, K., et al., Inflammation-stimulated lymphangiogenesis in the cornea arises
from CD11b-positive macrophages. J Clin Invest, 2005. 115(9): p. 2363-72.
38. Schroedl, F., et al., The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive
macrophages. Invest Ophthalmol Vis Sci, 2008. 49(12): p. 5222-9.
39. Francey, T., et al., Culture of ovine bone marrow-derived macrophages and evidence for serum factors distinct from M-CSF contributing to their propagation in vitro. J Leukoc Biol, 1992. 51(6): p. 525-34.
40. Maruyama, K., et al., Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J
Pathol, 2007. 170(4): p. 1178-91.
41. Wells, C.M., et al., Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. J Cell Sci, 2004. 117(Pt 7): p. 1259-68.
42. Guo, H., et al., Pivotal Advance: PKCzeta is required for migration of macrophages. J Leukoc Biol, 2009. 85(6): p. 911-8.
43. Nanney, L.B., et al., Calreticulin enhances porcine wound repair by diverse biological effects. Am J Pathol, 2008. 173(3): p. 610-30.
44. Day, C., et al., The chemokine CXCL16 is highly and constitutively expressed by human bronchial epithelial cells. Exp Lung Res, 2009. 35(4): p. 272-83.
45. Don, M.J., et al., Cryptotanshinone inhibits chemotactic migration in macrophages through negative regulation of the PI3K signaling pathway. Br J Pharmacol, 2007. 151(5): p. 638-46.
46. Gordillo, G.M., et al., A key angiogenic role of monocyte chemoattractant protein-1 in hemangioendothelioma proliferation. Am J Physiol Cell Physiol, 2004. 287(4): p.
C866-73.
47. Green, C.E., et al., Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One, 2009. 4(8): p. e6713.
48. Hollingsworth, J.W., et al., CD44 regulates macrophage recruitment to the lung in lipopolysaccharide-stimulated airway disease. Am J Respir Cell Mol Biol, 2007. 37(2): p. 248-53.
49. Ohba, T., et al., A potential role of thymic stromal lymphopoietin in the recruitment of macrophages to mouse intervertebral disc cells via monocyte chemotactic protein 1 induction: implications for herniated discs. Arthritis Rheum, 2008. 58(11): p. 3510-9.
50. Tian, Y., S.E. Kelemen, and M.V. Autieri, Inhibition of AIF-1 expression by constitutive siRNA expression reduces macrophage migration, proliferation, and signal transduction initiated by atherogenic stimuli. Am J Physiol Cell Physiol, 2006. 290(4): p. C1083-91.
51. Tzang, B.S., et al., Effects of human parvovirus B19 VP1 unique region protein on macrophage responses. J Biomed Sci, 2009. 16: p. 13.
52. van der Voort, R., et al., Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum, 2005. 52(5): p. 1381-91.
53. Lee, S.Y. and J.Y. Cho, Inhibitory effects of honokiol on LPS and PMA-stimulated cellular responses of macrophages and monocytes. BMB Rep, 2009. 42(9): p. 574-9.
54. Ward, C., et al., Bronchial epithelial cells cultured from clinically stable lung allograft patients promote the development of macrophages from monocytes rather than
dendritic cells. Thorax, 2009. 64(5): p. 430-5.
55. Schledzewski, K., et al., Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol, 2006. 209(1): p. 67-77.
指導教授 凌慶東、黃榮三
(Qing-dong Ling、Jung-san Huang)
審核日期 2010-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明