博碩士論文 972211003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.234.210.89
姓名 陳彥如(Yen-ju Chen)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 從年齡動態網路探討疾病盛行率
(Age dynamic human disease networks of organ systems)
相關論文
★ 細菌物種基因體中非編碼小片段核糖核酸之預測★ 藉由比較基因表現資料研究次世代定序與晶片技術分析差異
★ 啟動子甲基化與對應之基因表現微陣列資訊整合分析★ 乾燥綜合症與非病毒型肝炎之相關因子分析
★ 氣候變遷對人類疾病網路造成衝擊★ 台北和中壢地區不孕症分佈與共病探討
★ 探討台灣的門診疾病與環境空氣品質的濃度變化之相關性★ 使用支持向量機預測蛋白質醣基化位置
★ 使用基因表現資料預測基因轉錄調控網路★ RNA Riboswitch搜尋系統之設計與實作
★ 人類疾病差異表現基因與調控網路之整合系統★ 利用赫伯特-黃轉換法辨識酵母菌在呼吸/還原週期中的震盪基因群
★ 運用高通量基因微矩陣列方法解析由嗜鉻 細胞分化成神經細胞之全基因體的調控★ 不同微陣列預處理方法以及即時聚合酶鏈鎖反應之微陣列基因表現量比較
★ 利用赫伯特-黃轉換法做為在質譜儀分析技術的前處理方法★ 從年齡動態網路探討疾病表現與疾病盛行率
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 網路不僅僅被應用在基因、蛋白質及代謝等各個領域上,已有許多研究關於疾病之間的共病性,卻鮮少著重在急病之間的方向性,意指疾病之間的前後發生順序。透過醫院的資料,研究疾病之間的關聯性,利用統計方法McNemar’’s test去估算兩兩疾病之間的關聯性,找出有顯著意義的疾病(χ^2>3.84, p<0.05) ,接著藉由odds ratio(OR) 計算疾病之間關聯性的強度,OR>1的疾病具有正相關性。建構疾病網路,分析疾病的共病性和盛行率在各年齡層的分佈、性別上的差異,以及疾病的所屬科別,經由疾病共病性的關係,以及在統計分析上具有顯著意義的資料,進而探討疾病之間的方向性,使用skewness test估算疾病之間的方向性,疾病間可能存在的因果關係。結果顯示,疾病間的共病性對於人類個體的影響更甚於單一疾病,不論是共病性或是方向性,皆因年齡和性別而有所不同。
摘要(英) Networks are performed to different genomic, proteomic, metabolic datasets to demonstrating the origins of specific diseases. A lot of studies are about disease comorbidity, but seldom researches on relationships about directionality of diseases. Through hospital datasets, we research association between disease pairs. To estimate correlations within two diseases by using statistic method that is McNemar’’s test. Getting significant data from McNemar’’s test are χ^2>3.84 (p<0.05). Then, we explore the strength of disease pairs by odds ratio (OR) that significant data are OR>1, meaning positive correlation. To construct disease networks and we analyze prevalence and comorbidity of disease difference in age, gender and department. Furthermore, according to comorbidity, we even try to investigae directionality of disease pairs. Through skewness test, we measure precedence between two diseases. Potentially, disorders exist causal relationships. However, disease comorbidity to individual affects more than single disease. Our study can show the result of comorbidity that differs in age and gender.
關鍵字(中) ★ 疾病網路
★ 麥內班檢定
★ 勝算比
★ 偏度檢定
★ 因果關係
★ 共病性
關鍵字(英) ★ causal relationship
★ skewness test
★ odds ratio
★ McNemar's test
★ disease networks
★ comorbidity
論文目次 Chinese Abstract I
English Abstract II
List of figures V
List of tables VI
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivation 3
Chapter 2 Material and methods 4
2-1 Material 4
2-1-1 ICD-9-CM codes 4
2-1-2 Hospital dataset 5
2-2 Methods 7
2-2-1 Network analysis 7
2-2-2 Statistical analysis 7
2-2-2-1 Hypothesis 7
2-2-2-2 McNemar's test 8
2-2-2-3 Odds ratio 10
2-2-2-4 Skewness test 11
2-3 Work flow 12
Chapter 3 Result 15
3-1 Statistical dataset distribution 15
3-2 Degree distribution 18
3-3 The age dynamic human disease network 19
3-4 Case study 21
3-4-1 Digestive system 21
3-4-2 Gynecology 24
Chapter 4 Discussion 29
References 32
參考文獻 1. Vanunu, O., et al., Associating Genes and Protein Complexes with Disease via Network Propagation. PLoS Computational Biology, 2010. 6(1): p. e1000641.
2. Goh, K.-I., et al., The human disease network. PNAS, 2007. 104(21): p. 8685-8690.
3. Elavsky, S. and E. McAuley, Personality, Menopausal Symptoms, and Physical Activity Outcomes in Middle-Aged Women. Pers Individ Dif, 2009. 46(2): p. 123-128.
4. Solimene, M.C., Coronary heart disease in women: a challenge for the 21st century. Clinics, 2010. 65(1): p. 99-106.
5. Willett, W.C., Balancing life-style and genomics research for disease prevention. Science, 2002. 296(5568): p. 695-698.
6. Islam, T.M., et al., Age-related associations of hypertension and diabetes mellitus with chronic kidney disease. BMC Nephrology, 2009. 10(17).
7. Shim, Y.H., Cardioprotection and ageing. Korean J Anesthesiol, 2010. 58(3): p. 223-230.
8. Berry, S.D., et al., Competing risk of death: an important consideration in studies of older adults. J Am Geriatr Soc, 2010. 58(4): p. 783-787.
9. Loscalzo, J., I. Kohane, and A.L. Barabasi, Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol, 2007. 3: p. 124.
10. Buck, C.J., 2001 ICD-9-CM, volumes 1, 2, and 3. 2003.
11. Ravasz, E., et al., Hierarchical organization of modularity in metabolic networks. Science, 2002. 297(5586): p. 1151-1555.
12. Barabási, A.-L. and Z.N. Oltvai, Network biology: understanding the cell's functional organization. Nature Reviews Genetics, 2004. 5(2): p. 101-113.
13. Elston, R.C., J.M. Olson, and L. Palmer, Biostatistical genetics and genetic epidemiology. Wiley reference series in biostatistics. 2002, Chichester, England ;: New York, NY Wiley. xxiv, 831 p.
14. Fleiss, J.L., B.A. Levin, and M.C. Paik, Statistical methods for rates and proportions. 3rd ed. Wiley series in probability and statistics. 2003, Hoboken, N.J.: J. Wiley. xxvii, 760 p.
15. Kraemer, H.C., Reconsidering the odds ratio as a measure of 2x2 association in a population. Stat Med, 2004. 23(2): p. 257-70.
16. Knapp, R.G. and M.C. Miller, Clinical epidemiology and biostatistics. National medical series for independent study. 1992, Malvern, Pa ; Baltimore London: Harwal Pub. Co ; Williams & Wilkins. xi, 435 p.
17. Wassertheil-Smoller, S., Biostatistics and epidemiology : a primer for health and biomedical professionals. 3rd ed. 2004, New York: Springer-Verlag. xvi, 243 p.
18. OSVOLL, P.O. and T. WOLDBáK, Distribution and skewness of occupational exposure sets of measurements in the norwegian industry. Elsevier Science Ltd, 1999. 43(6): p. 421-428.
19. Sulewski, P., The three-folded skewness test, when a sample size is small. COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY, 2009. 15(2): p. 195-201.
20. Hidalgo, C.s.A., et al., A Dynamic Network Approach for the Study of Human Phenotypes. PLoS Computatioanl Biology, 2009. 5(4).
21. Wood, L.D., et al., The genomic landscapes of human breast and coloretal cancers. Science, 2007. 318: p. 1108-1113.
22. Swerdlow, A.J. and M.E. Jones, Tamoxifen treatment for breast cancer and risk of endometrial cancer: a case-control study. Journal of the National Cancer Institute, 2005. 97(5): p. 375-384.
23. Yıldırım, M.A., et al., Drug target network. NATURE BIOTECHNOLOGY, 2007. 25(10): p. 1119-1126.
24. Perez, E.A., Safety profiles of tamoxifen and the aromatase inhibitors in adjuvant therapy of hormone-responsive early breast cancer. Annals of Oncology, 2007. 18(8): p. 26-35.
25. DeMichele, A., et al., Impact of raloxifene or tamoxifen use on endometrial cancer risk: a population-based case-control study. JOURNAL OF CLINICAL ONCOLOGY, 2008. 26: p. 4151-4159.
26. Thu¨rlimann, B., Reducing the risk of early recurrence in hormone-responsive breast cancer. Annals of Oncology, 2007. 18(8): p. 8-17.
27. Nelson, H.D., et al., Systematic review: comparative effectiveness of medications to reduce risk for primary breast cancer. Annals of Internal Medicine, 2009. 151(10): p. 703-715.
指導教授 吳立青(Li-ching Wu) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明