博碩士論文 972211008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.227.249.234
姓名 鄭主佑(Chu-yu Cheng)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法
(A Comparison of Genome Copy Number Variation Analysis using two Methods: Hidden Markov Model and Pair-wise Gaussian Merging)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法
★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法
★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells
★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討
★ 運用時間序列微陣列資料來預測調控基因★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型
★ 一種找尋再利用藥物複合物來系統性治療複雜疾病的架構:大腸直腸腺瘤的應用★ 以上皮細胞間質化與增生相關功能來描述癌症幹細胞之基因型
★ 從共表達差異基因對導出正常腦老化及因阿茲海默症特定腦區導致在功能性基因途徑與樞紐基因子網絡之變化★ 以疾病進展趨勢挑選基因法識別正常腦老化與阿爾茨海默氏症在特定腦區引發的關鍵功能路徑與調節路徑之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全基因體的拷貝數變異,自全人類基因體定序計畫完成之後便已漸漸被注意及探討。其中,以老鼠為模型的實驗有完善的微陣列晶片數據和明確的品種間基因拷貝數差異性。利用兩種不同的演算法─隱藏馬可夫模型以及成對高斯合併法─來判定老鼠全基因體拷貝數位置,我們發現這兩者判定的結果,無論在拷貝數變異區段之長度、位置、或是數量上,都有非常顯著的差異。我們認為原因是:兩種演算法背後有著截然不同的統計理論支持,導致判定區段時的策略不同。成對高斯合併法判定的拷貝數變異區段相對於隱藏馬可夫模型判定的結果來說,有較廣的區段長度分布,也有較多的區段個數。但是我們發現將兩者過短的區段忽略不看之後,判定的總區段數量便會幾乎相同。未來,我們也可以將這兩種演算法預測的結果拿來做進一步的比較,找出相同或相異的基因名稱及其註解;或甚至與更多不同的演算法比較。除了探討各種演算法的計算速度與硬體消耗程度之外,也可以套用在分析老鼠全基因體拷貝數變異的研究上。
摘要(英) Whole genome copy number variation (CNV) has been noticed and the related studies grew in amount since the completion of Human Genome Project (HGP). Those experiments using mouse as a biological model present a complete microarray data and clear CNV diversities between different strains. Applying two different algorithms, Hidden Markov Model (HMM) & Pair-wised Gaussian Merging (PGM), to determine the mouse genome-wide CNV segment, we found that the results are significantly different on CNV length, CNV location, and the number of CNV segments. We thought the reason might be: The two underlying statistical theories are quite different, leading to the different decision-making patterns of finding CNV segments. The distribution of the length of CNV segment determined by PGM is wider than those determined by HMM. However, after filtering the shorter CNV segments, the total number of results generated by these two algorithms became almost the same. So we can do further study on the data generated by HMM & PGM, such as finding out the CNV segments that only appeared in one of their results and checking the gene symbols or gene annotations. Besides the comparison of the calculating speed and space requirement between these algorithms, we can even applying them on the analysis of mouse whole-genome CNV.
關鍵字(中) ★ 成對高斯合併法
★ 老鼠全基因體
★ 高斯合併
★ 拷貝數
★ 基因體拷貝數變異分析
★ 拷貝數變異
★ 隱藏馬可夫模型
關鍵字(英) ★ Copy Number Variation
★ PGM
★ whole genome
★ Gaussian Merging
★ HMM
★ Copy Number
★ whole genome CNV analysis
★ mouse
★ CNV
★ Pair-wise Gaussian Merging
★ Hidden Markov Model
論文目次 中文摘要 ……………………………………………………………… i
英文摘要 ……………………………………………………………… ii
致謝  ……………………………………………………………… iii
目錄  ……………………………………………………………… iv
一、  簡介………………………………………………………… 1
  1-1 拷貝數變異(CNV) ………………………………………… 1
  1-2 以老鼠為生物模型………………………………………… 2
  1-3 微陣列晶片與CGH晶片…………………………………… 3
  1-4 ROC曲線 …………………………………………………… 5
  1-5 隱藏馬可夫模型(HMM) …………………………………… 7
  1-6 成對高斯合併法(PGM) …………………………………… 8
  1-7 相關研究…………………………………………………… 11
二、  研究內容與方法…………………………………………… 13
  2-1 NCBI………………………………………………………… 13
  2-2 老鼠全基因拷貝數晶片…………………………………… 14
  2-3 研究流程…………………………………………………… 16
  2-4 PGM公式與步驟 …………………………………………… 18
  2-5 多晶片結果合併與CNV位置判定………………………… 21
三、  結果………………………………………………………… 23
  3-1 兩種演算法相比較時PGM參數N之選擇………………… 23
  3-2 兩種演算法相比較時PGM參數t0之選擇………………… 26
  3-3 兩種演算法之解析度與平台長度門檻之設定…………… 30
  3-4 兩種演算法之平台結構與平台長度分布比較…………… 33
四、  討論………………………………………………………… 37
五、  參考文獻…………………………………………………… 39
六、  附錄………………………………………………………… 41
  附表 CNV區段長度分布統計表 ………………………………… 42
  網址 CNV區段表 ………………………………………………… 43
參考文獻 [1] Orozco LD, Cokus SJ, Ghazalpour A, Ingram-Drake L, Wang S, van Nas A, Araujo JA, Pellegrini M, Lusis AJ. (2009) Copy number variation influences gene expression and metabolic traits in mice. Hum. Mol. Genet., Vol. 18, No. 21 4118–4129
[2] Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R. et al. (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451, 998–1003.
[3] Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero, MH, Carson AR, Chen W. et al. (2006) Global variation in copy number in the human genome. Nature, 444, 444–454.
[4] Graubert TA, Cahan P, Edwin D, Selzer RR, Richmond TA, Eis PS, Shannon WD, Li X, McLeod HL, Cheverud JM. et al. (2007) A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genet., 3, e3.
[5] Guryev V, Saar K, Adamovic T, Verheul M, van Heesch SA, Cook S, Pravenec M, Aitman T, Jacob H, Shull JD. et al. (2008) Distribution and functional impact of DNA copy number variation in the rat. Nat. Genet., 40, 538–545.
[6] Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C. et al. (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 315, 848–853.
[7] Schaschl H, Aitman TJ and Vyse TJ. (2009) Copy number variation in the human genome and its implication in autoimmunity. Clin. Exp. Immunol., 156, 12–16.
[8] Milanese M, Segat L, Arraes LC, Garzino-Demo A and Crovella S. (2009) Copy number variation of defensin genes and HIV infection in Brazilian children. J. Acquir. Immune Defic. Syndr., 50, 331–333.
[9] Nakajima T, Ohtani H, Naruse T, Shibata H, Mimaya JI, Terunuma H and Kimura A. (2007) Copy number variations of CCL3L1 and long-term prognosis of HIV-1 infection in asymptomatic HIV-infected Japanese with hemophilia. Immunogenetics, 59, 793–798.
[10] Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L. et al. (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet., 39, 319–328.
[11] She X, Cheng Z, Zöllner S, Church DM and Eichler EE. (2008) Mouse segmental duplication and copy number variation. Nat. Genet., 40, 909–914.
[12] Henrichsen CN, Vinckenbosch N, Zöllner S, Chaignat E, Pradervand S, Schütz F, Ruedi M, Kaessmann H, Reymond A. (2009) Segmental copy number variation shapes tissue transcriptomes. Nat. Genet., 41, 424–429.
[13] Jong K, Marchiori E, van der Vaart A, Ylstra B, Meijer G and Weiss M. (2003) Chromosomal breakpoint detection in human cancer. In Lecture Notes in Computer Science, Springer-Verlag, Berlin, Vol. 2611, pp. 54–65.
[14] Jong K. et al. (2004) Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics, 20, 3636–3637.
[15] Lai WR, Johnson MD, Kucherlapati R, Park PJ. (2005) Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21: 3763–3770.
[16] Fridlyand J et al. (2004) Hidden Markov models approach to the analysis of array CGH data. J. Multivariate Anal., 90, 132–153.
[17] Olshen AB and Venkatraman ES. (2002) Change-point analysis of array-based comparative genomic hybridization data. American Statistical Association Proceedings of the Joint Statistical Meetings, American Statistical Association, Alexandria, VA, pp. 2530–2535.
[18] Olshen AB et al. (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics, 5, 557–572.
[19] Hupe P et al. (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20, 3413–3422.
[20]Conrad DF et al. (2009) Origins and functional impact of copy number variation in the human genome. Nature, 464, 704-712.
[21] Mei TS, Salim A, Calza S, Seng KC, Seng CK, Pawitan Y. (2010) Identification of recurrent regions of copy-number variants across multiple individuals. BMC Bioinformatics, 11, 147.
[22] Rueda OM, Diaz-Uriarte R. (2008) Finding Recurrent Regions of Copy Number Variation: A Review. Collection of Biostatistics Research Archieve, 2008, Art42.
指導教授 李弘謙(Hoong-Chien Lee) 審核日期 2010-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明