博碩士論文 972212001 詳細資訊


姓名 楊双豪(Shuang-hao Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高指向性LED外腔式光源機構之研究
(Study of High-Directional LED with External Cavity)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中,我們利用具有表面微結構之薄膜型氮化鎵LED搭配外腔式光源機構,設計出高指向性之光源機構模型。首先,針對氮化鎵LED的幾何結構以及光學特性進行量測,並經由此實驗數據建立出相似度高達99.8%的LED光學模型。接著利用此模型設計一外腔式光源機構,使LED的光線發散角得以從±90°縮小至±30°以內,並計算出光耦合效率、能量提升比例以及散角分佈。最後,我們將此光源機構的實驗數據與模擬結果一一進行比較與探討,進而得到一高精準度之外腔式光源機構模型,而此模型也有利於之後進一步優化的設計。
摘要(英) In this thesis, we incorporate an external cavity with the surface texture for ThinGaN LEDs to obtain a high-directional light source. First of all, we measure the geometric structure on the top surface of ThinGaN LEDs and the characteristic of optical parameters. According to the information, we build up a precise optical model of ThinGaN LED to design an external cavity with special light cone of 30°, which is different from 90° of general LEDs. The output coupling efficiency, enhancement ratio, and spatial distribution are analyzed. Finally, we compare the experiment results with the simulation, and the characteristic of the new light source is discussed.
關鍵字(中) ★ 光展量
★ 耦合效率
★ 光子回收
★ 薄膜型氮化鎵LED
★ 表面結構
關鍵字(英) ★ Étendue
★ Coupling Efficiency
★ Photon Recycle
★ ThinGaN LED
★ Surface Texture
論文目次 摘要 ........................................................................................................................ I
目錄 ..................................................................................................................... IV
圖索引 ................................................................................................................ VII
表索引 ................................................................................................................ XII
第一章 緒論 ...................................................................................................... 1
1-1 前言 ...................................................................................................... 1
1-2 LED 的發展概況 ................................................................................. 2
1-3 LED 於高指向性光源之應用 ............................................................. 5
1-4 論文大綱 .............................................................................................. 7
第二章 基本原理介紹 ......................................................................................... 8
2-1 LED 發光原理 ..................................................................................... 8
2-2 LED 發光效率 ................................................................................... 11
2-2-1 LED 內部量子效率................................................................. 13
2-2-2 LED 光萃取效率 ..................................................................... 15
2-3 薄膜型LED 發光效率之提升 .......................................................... 19
2-4 LED 之指向性 ................................................................................... 23
V
第三章 高指向性LED 光源模型的建立 ......................................................... 28
3-1 光子回收機制之先前技術 ................................................................ 28
3-2 高指向性光源機構之設計概念 ........................................................ 29
3-3 ThinGaN LED 光學模型之建立與驗證 ........................................... 32
3-3-1 蒙地卡羅光線追跡法 ............................................................. 32
3-3-2 ThinGaN LED 光學模型與模擬參數 ................................... 34
3-3-3 ThinGaN LED 表面微結構之建立 ....................................... 36
3-3-4 光學模型驗證 ......................................................................... 40
第四章 高指向性光源機構之設計 ................................................................... 44
4-1 初階設計與模擬參數 ......................................................................... 44
4-2 初階設計之分析與實作 .................................................................... 47
4-2-1 肉厚對反射杯之影響 ............................................................. 47
4-2-2 反射杯之模型設計 ................................................................. 53
4-2-3 出光耦合效率、能量提昇率和散角分佈圖 ......................... 56
4-3 反射杯之反射率量測 ........................................................................ 70
4-4 反射杯之散射效應 ............................................................................ 75
VI
第五章 結論 ....................................................................................................... 82
參考文獻 ............................................................................................................. 84
中英文名詞對照表 ....................................................................................... 87
參考文獻 [1] H. J. Round, “A note on carborundum,” Electrical World 49, 309-310 (1907).
[2] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[3] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
[4] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[5] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
[6] M. G. Craford, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
[7] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353-355 (1986).
[8] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/a-Al2O3 heterepitaxial growth by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
[9] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[10] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[11] LEDinside, http://www.LEDinside.com/.
[12] 孫慶成,LED 的效率極限與照明光學設計的極致,LED固態照明研討會論文集,中華民國九十八年。
[13] Cree, Inc., http://www.cree.com/.
[14] W. Alexander, “Requirements on LEDs in etendue limited light engines,” Proc. SPIE 7001, 70010F:1-10 (2008).
[15] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE PRESS, Washington, 1998).
[16] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
[17] Y. Qin, X. Guo, W. J. Jiang, R. Fang, and G. D. Shen, “Light Extraction Analysis of AlGaInP based LED with Surface Texture,” Proc. SPIE 7635, 763505:1-7 (2009).
[18] B. Hahn, A. Weimar, M. Peter, and J. Baur, “High-power InGaN LEDs: present status and future prospects,” Proc. SPIE 6910, 691004:1-8 (2008).
[19] C. C. Sun, S. Y. Tsai, T. X. Lee, and W. T. Chien, “Enhancement of Angular Flux Utilization and Light Extraction Efficiency based on Micro Array in GaN LEDs,” Proc. SPIE 7617, 76170A:1-5 (2010).
[20] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Optics Express 15, 6670-6676 (2007).
[21] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Appl. Phys. Lett. 89, 071109:1-3 (2006).
[22] C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Analysis of the emission characteristics of photonic crystal LEDs,” Proc. SPIE 6989, 69890L:1-9 (2008).
[23] T. P. Chen, C. L. Yao, C. Y. Wu, J. H. Yeh, C. W. Wang, and M. H. Hsieh, “Recent Development in High Brightness LEDs,” Proc. SPIE 6910, 691005:1-10 (2008).
[24] T. P. Chen, T. C. Hsu, C. Y. Luo, M. C. Hsu, and T. X. Lee, “Improvement in Light Extraction Efficiency of High Brightness InGaN-Based Light Emitting Diodes,” Proc. SPIE 7216, 72161T:1-10 (2009).
[25] N. Linder, S. Kugler, P. Stauss, K. P. Streubel, R. Wirth, and H. Zull, “High-Brightness Light-Emitting Diodes Using Surface Texture,” Proc. SPIE 4278, 19-25 (2001).
[26] K. Li, S. Inatsugu, “Etendue efficient coupling of an array of LEDs for projection display,” Proc. SPIE 5740, 36-40 (2005).
[27] M. D. B. Charlton, M. E. Zoorob, and T. Lee, “Photonic quasi-crystal LEDs: design, modeling and optimization,” Proc. SPIE 6486, 64860R:1-10 (2007).
[28] K. Bergenek, Ch. Wiesmann, H. Zull, C. Rumbolz, R. Wirth, N. Linder, K. Streubel, and T. F.Krauss, “Beam-shaping properties of InGaN thin-film micro-cavity lightemitting diodes with photonic crystals,” Proc. SPIE 7231, 72310C:1-11 (2009).
[29] C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic Crystal LEDs – designing light extraction,” Laser & Photon. Rev. 3, 262-286 (2009).
[30] Luminus Devices, Inc., http://www.luminus.com/.
[31] LG, http://www.lg.com/.
[32] K. Li, S. Sillyman, S. Inatsugu, “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems,” Proc. SPIE 5289, 246-254 (2004).
[33] S. J. Lee, “Analysis of InGaN high-brightness light-emitting diodes,” Jpn, J. Appl. Phys. 37, 5990-5993 (1998).
[34] C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “Enhancement of light extraction of GaN-based LED with introducing micro-structure array,” Opt. Eng. 43, 1700-1701 (2004).
[35] T. X. Lee, C. Y. Lin, S. H. Ma, and C. C. Sun, “Analysis of position-dependent light extraction of GaN-based LED,” Optics Express 13, 4175-4179 (2005).
[36] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for lighting based on cross-correlation in mid-field region,” Opt. Lett. 31, 2193-2195 (2006).
[37] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Optics Express 15, 6670-6676 (2007).
[38] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 114, 185-200 (1994).
[39] J. P. Berenger, “Perfectly mateched layer for the FDTD solution of wave-structure interaction problems,” IEEE. Trans. Antennas. Propag. 44, 110-117 (1996).
[40] 李宗憲,氮化鎵發光二極體之光萃取效率分析與晶片設計,國立中央大學光電科學研究所博士論文,中華民國九十七年。
[41] 蔡尚佑,LED晶片微結構對光萃取效率及指向性之模擬與分析,國立中央大學光電科學研究所碩士論文,中華民國九十八年。
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡