博碩士論文 972401005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.206.187.81
姓名 鄭至人(Chih-Ren Cheng)  查詢紙本館藏   畢業系所 數學系
論文名稱 ZCm 的理想環生成元個數之上限
(An Upper Bound for the Number of Generators of an Ideal in ZCm)
相關論文
★ 關於胡-黃-王猜測的研究★ 關於 (2,n) 群試問題的研究
★ 數論在密碼學上的應用★ 關於方程式 x^2+11=p^n 的研究
★ a^n-b^n的原質因子,其中a,b為高斯整數★ 關於方程式2x^2+1=3^n的研究
★ Group Representations on GL(2,F_q)★ Legendre的定理在Z[i]和Z[w]的情形
★ On problems of certain arithmetic functions★ Diophantine approximation and the Markoff chain
★ The average of the number of r-periodic points over a quadratic number field.★ 週期為r之週期點個數的平均值
★ 橢圓曲線上扭點的平均數★ 正特徵值函數體上的逼近指數之研究
★ 伽羅瓦理論★ k階歐幾里得環
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在1966年,P. M. Cohn 受到佈於歐幾里德環的可逆矩陣可以用基本方陣列簡化為單位矩陣這個性質的啟發,介紹了廣義歐幾里德環的概念。在1984年,Dennis、Magurn 與 Vaserstrin 證明有限循環群Cm的整數群環ZCm是廣義歐幾里德環。已知廣義歐幾里德環是quasi-歐幾里德環且quasi-歐幾里德環是廣義歐幾里德環。本文中,對於非明顯交換群G,我們建構一個ZG的有限生成非主理想環來證明ZG既不是歐幾里德環也不是quasi-歐幾里德環,並且給出ZCm的理想環生成元個數之上界。特別是當m為一個質數的次方時,我們給出更嚴謹的上界。在最後一章裡,藉由Wedderburn-Artin 定理,我們會用一個比Bass的證明更容易理解的方式來證明:半局部環的穩定秩為一,所以它是廣義歐幾里德環。
摘要(英) In 1966, P. M. Cohn introduced the concept of a generalized Euclidean ring, inspired by the property that any invertible matrix over a Euclidean ring can be row-reduced to the dentity matrix by elementary matrices. In 1984, Dennis, Magurn and Vaserstein proved that the integral group ring ZCm of finite cyclic group Cm is generalized Euclidean.
It is well known that a Euclidean ring is quasi-Euclidean and a quasi-Euclidean ring is generalized Euclidean. In this thesis, we construct a fi nitely generated nonprincipal ideal of ZG for nontrivial abelian group G to show that ZG is neither Euclidean nor quasi-Euclidean. Moreover, we give an upper bound for the number of generators of an ideal in ZCm. The case m being a power of a prime is treated more seriously. In the final chapter, following the Wedderburn-Artin Theorem, we give a more accessible proof than Bass′ to show that a semilocal ring has stable rank one, hence it is a generalized Euclidean ring.
關鍵字(中) ★ 整數群環
★ 廣義歐幾里德
★ 半局部環
★ 穩定秩
關鍵字(英) ★ integral group ring
★ generalized Euclidean
★ semilocal ring
★ stable rank
論文目次 1 Introduction 1
1.1 Introduction 1
1.2 Preliminary 2

2 Group Rings 6
2.1 De nition of Group Rings and Augmentation Mappings 6
2.2 Generalized Euclidean Group Rings 9

3 Integral Group Rings 11
3.1 ZG Is Not a Principal Ideal Ring 11
3.2 Number of Generators of an Ideal in ZCm 15

4 Stable Rank of a Semilocal Ring 23
4.1 Stable Rank of a Ring 23
4.2 Wedderburn-Artin Theorem 27
4.3 Stable Rank of a Semilocal Ring Is One 29

Appendix to Section 3.2 : An Elementary Proof for the Case ZC3 33

References 37
參考文獻 [1] H. Bass, K-theory and stable algebra, Inst. Hautes Etudes Sci. Publ. Math. 22 (1964), 5-60.
[2] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968.
[3] W.-Y. Chang, On a paper of P. M. Cohn, Master thesis, National Central University, Chung-li, Taiwan, 2015.
[4] W.-Y. Chang, C.-R. Cheng, and M.-G. Leu, A remark on the ring of algebraic integers in Q(√?-d), Israel Journal of Mathematics 216 (2016), 605-616.
[5] C.-A. Chen, About k-stage Euclidean rings, Ph.D. thesis, National Central University, Chung-li, Taiwan, 2011.
[6] C.-A. Chen and M.-G. Leu, The 2-stage Euclidean algorithm and the restricted Nagata′s pairwise algorithm, J. Algebra 348 (2011), 1-13.
[7] P. M. Cohn, On the structure of the GL2 of a ring, Inst. Hautes Etudes Sci. Publ. Math. 30 (1966), 5-53.
[8] G. E. Cooke, A weakening of the Euclidean property for integral domains and applications to algebraic number theory I, J. Reine Angew. Math. 282 (1976), 133-156.
[9] K. Dennis, B. Magurn, and L. Vaserstein, Generalized Euclidean group rings, J. Reine Angew. Math. 351 (1984), 113-128.
[10] G. Dresden, Resultants of cyclotomic polynomials, Rocky Mountain J. Math. 42:5 (2012), 1461-1469.
[11] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd ed., John Wiley and Sons, New York, 2003.
[12] A. J. Hahn and O. T. O′Meara, The Classical Groups and K-Theory, Springer-Verlag, New York, 1989.
[13] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[14] T. Y. Lam, Bass′s work in ring theory and projective modules, in: T. Y. Lam, A. R. Magid (Eds.), Algebra, K-theory, Groups,
and Education, on the Occasion of Hyman Bass′s 65th Birthday, Contemp. Math. 243 (1999), 83-124.
[15] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 2001.
[16] A. Leutbecher, Euklidischer Algorithmus und die Gruppe GL2, Math. Ann. 231 (1978), 269-285.
[17] B. A. Magurn, An Algebraic Introduction to K-Theory, Cambridge University Press, Cambridge, 2002.
[18] B. A. Magurn, On a note from Oliver concerning generalized Euclidean group rings, Comm. Algebra 42 (2014), 3350-3365.
[19] J. M. Masley and H. L. Montgomery, Cyclotomic elds with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256.
[20] H. Matsumura, Commutative Ring Theory, translated from the Japanese by M. Reid, 2nd ed., Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1989.
[21] C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
[22] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin Heidelberg, 1999.
[23] D. S. Passman The Algebraic Structure of Group Rings, John Wiley and Sons, New York, 1977.
[24] S. Perlis and G. L. Walker, Abelian group algebras of nite order,
Trans. Amer. Math. Soc. 68 (1950), 420-426.
[25] P. Ribenboim, Rings and Modules, John Wiley and Sons, New York, 1969.
[26] P. Samuel, About Euclidean rings, Journal of Algebra 19 (1971), 282-301.
[27] A. A. Suslin, On the structure of the special linear group over polynomial rings, Mathematics of the USSR-Izvestiya, 11:2 (1977), 221-238.
[28] A. R. Tambunan, On generalized Euclidean rings, Master thesis, National Central University, Chung-li, Taiwan, 2017.
[29] L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funktsional. Anal. i Prilozhen. 5:2 (1971), 17-27.
[30] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer-Verlag, New York, 1997.
指導教授 夏良忠、呂明光(Liang-Chung Hsia Ming-Guang Leu) 審核日期 2017-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明