博碩士論文 972402004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.226.251.205
姓名 姜瑋茵(Wei-Yin Chiang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 耦合在非線性系統中的影響:模型探討以及非線性分析
(Effects of Coupling in Nonlinear Dynamical Systems:Model study and Nonlinear Analysis)
相關論文
★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits★ 二維非彈性顆粒子之簇集現象
★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究★ 顆粒體複雜流動之研究
★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究★ 帶電高分子吸附在帶電的表面上之研究
★ 自我纏繞繩節高分子之物理★ 高分子鏈在強拉伸流場下之研究
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 最佳化網路成長模型的理論研究
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ DNA在微通道的熱泳行為★ 皮膚細胞增生與腫瘤生長之模擬
★ 從網路節點時間序列分析網路特性並應用在體外培養神經及心臟細胞★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們考慮擁有不同特性之元素間的四種耦合: 噪聲下可激發元素間之耦合、自發性震盪元素間之耦合、自發性震盪元素與可激發元素之耦合以及自發性震盪元素與被動元素間之耦合,並透過數值模擬、非線性動力學之解析方法以及統計力學等方法,來有系統的對其所對應之物理機制有更深的了解。在噪聲下可激發元素間之耦合系統的動力學中,我們考慮了不同的系統拓撲結構以及系統的大小對動力學行為的影響。由頻率的分佈,我們發現能代表系統同步性的分佈寬度隨著耦合強度增加而減少,在此同時,系統的平均頻率隨著耦合強度非單調性的增加,而當系統同步時,系統的頻率大於沒有耦合時的頻率,此為頻率增昇現象並可以 Kramer’s escape rate 理論來進行解釋。而在自發性震盪元素耦合系統中,數值模擬的結果顯示,在擁有不同的時間尺度的變數上耦合,會形成不同的同步頻率,並可進一步利用 phase reduction 的化簡方式來對此現象進行了解。而在自發性震盪元素與可激發元素之耦合系統中也發現到頻率增昇的的現象,而我們發現此頻率增昇是因為自發性震盪元素與可激發元素的穩定之不動點作用,使得自發性震盪元素相空間中軌跡縮短所造成。當耦合強度持續增加,我們的解析計算顯示系統會由震盪轉為安靜狀態是由於 Hopf bifurcation 的發生所造成。最後,自發性震盪元素與被動元素間之耦合系統可以被用來描述利用群眾感應機制所產生的集體行為。在平均場的近似中,藉由相位模型的 saddle-node bifurcation 或是震幅模型的 Hopf bifurcation 所產生之集體行為可被解析分析並藉由數值模擬的方式驗證。而在非平均場的模型中,化學信號分子僅能在局部的利用擴散方式來傳遞,當其濃度夠高,細胞間之集體行為便會被啟動。同時利用解析及數值模擬的方式,對因為減少細胞間距以及擴散常數而使得系統失去穩定性產生集體震盪之集體行為的基本啟動機制進行探討。
摘要(英) Four types of cell-cell coupling related to models in biological systems are considered here: coupled noisy excitable-excitable elements, coupled oscillatory-oscillatory elements, coupled oscillatory-excitable elements and coupled oscillatory-passive elements. Systematic numerical simulations are carried out for these systems, analytic methods in nonlinear dynamics and statistical physics are also employed to gain deeper insights for the corresponding physical mechanisms. The oscillatory behavior of the coupled noisy excitable elements is investigated for systems with different topologies and sizes. From the frequency distributions at different coupling strengths, it is found that the distribution width, which characterizes the synchronization level, decreases with the coupling strength; while the mean frequency varies nonmonotonically. The key result is that the system synchronizes at a frequency higher than the uncoupled intrinsic frequencies, exhibiting the “frequency enhancement” phenomenon, which can further be explained by Kramer’s escape rate the-
ory. For coupled-oscillators in the absence of noise, simulation results indicate that by coupling in different components(fast or small variable), one can obtain different synchronized frequencies, which can be further explained by the asymmetric coupling effect in phase reduction method. Frequency enhancement is also observed in coupled noise-free
oscillatory-excitable elements, and its mechanism is understood in terms of shortening of the oscillator’s excursion period in phase space. Analytical calculations indicate a Hopf bifurcation at some coupling strength. Finally, oscillators coupled with passive element are
employed to model the quorum sensing phenomenon. Under mean-field approximation, the onsets of the collective behavior with both saddle-node bifurcation in phase model and Hopf bifurcation in amplitude model are calculated analytically and verified by simulations. Non-mean-field model with the chemical signals exchange locally by diffusion are also investigated. In this case, the sensing process only involves the local chemical concentration, and the onset of collective behavior happens only when the local chemical
concentration is sufficiently high. The instability for the onset of oscillatory behavior by reducing the inter-cell separation and diffusion coefficient of the signaling chemicals are studied both analytically and by simulations.
關鍵字(中) ★ 自發震盪元素
★ 群眾感應
★ 頻率增昇
★ 耦合
★ 非線性系統
★ 可激發元素
關鍵字(英) ★ frequency enhancement
★ quorum sensing
★ excitable element
★ nonlinear
★ couple
★ oscillator
論文目次 1. Introduction . . . . . . . . . . . . . . 1
1.1 Mathematical description of the intrinsic dynamics of single cell . . . . . . 3
1.2 FitzHugh-Nagumo model . . . . . . . . . 6
1.3 Coherence resonance . . . . . . . . . 9
1.4 Synchronization . . . . . . . . . . . 9
2. Coupled Noisy Excitable elements: Frequency Variation and Enhancement . . . 13
2.1 Coupled between two excitable elements . . . . 14
2.1.1 Theoretical explanation . . . . . . . . 14
2.1.2 Effect of the element’s excitability . . . . 17
2.2 Coupled Noisy Excitable Network: effect of topology and spatial dimensions 19
2.3 Discussions . . . . . . . . . . . . 29
3. Two-Coupled Oscillators: synchronized at a compromised frequency . . . . . . . 33
3.1 Phase reduction description. . . . . . . . 35
3.2 How does the coupling form affect the synchronized frequency? . . . . . . . 36
3.2.1 x-term coupling in FHN model . . . . . . 37
3.2.2 y-term coupling in FHN model . . . . . . 38
3.2.3 x- and y-coupling in FHN model . . . . . 39
3.3 Computer Simulation Results and Summary . . . 39
4. Coupled Oscillatory-Excitable elements. . . . . 43
4.1 Frequency enhancement in oscillatory-excitable system . . . . . . . . . . . 44
4.2 Coexistence of spiking and oscillatory behavior, and disappearance of oscillatory behavior . . . . . . 51
4.3 Summary . . . . . . . . . . . . . . 52
5. Coupling between Oscillators via Passive elements: Onset of Collective Oscillations
due to Concentration of Passive Chemicals . . . . . 57
5.1 Quorum Sensing . . . . . . . . . . . . 58
5.2 Mean field model. . . . . . . . . . . . 59
5.2.1 Kuramoto-type phase model . . . . . . . 59
5.2.2 Amplitude model: modified FitzHugh-Nagumo model 69
5.3 Non-meanfield model: Effect of Spatial Diffusion of chemicals in FitzHugh-Nagumo model . . . . . . . 79
5.3.1 Local bifurcation . . . . . . . . . . 80
5.3.2 Global bifurcation . . . . . . . . . 83
5.4 Discussions . . . . . . . . . . . . 90
6. Summary and Outlook . . . . . . . . . . . 93
Bibliography. . . . . . . . . . . . . . . 99
Appendix . . . . . . . . . . . . . . . . 102
A. Coupled Noisy Excitable Elements . . . . . . . 103
A.1 FitzHugh-Nagumo model . . . . . . . . . . 103
A.1.1 Topology of random graph . . . . . . . . 103
A.2 Frequency Enhancement in different models: Van der Pol FitzHugh-Nagumo and Hodgkin-Huxley elements . . . . 105
B. Coupling between Oscillators via Passive Elements . 109
B.1 Nullclines, phase-portraits of the mean-field QS phase model . . . . . . . . 109
B.2 Bifurcation diagram in Mean-field FHN model . . . 113
B.3 Solving the resting state for Eq.5.23 . . . . 113
B.4 Proof: Excluding the saddle node bifurcation in single cell system – No pure real eigenvalue that λ = 0 for | B | = 0 . . . . . . . . . . . . . . . . 114
B.5 Proof: Excluding the saddle node bifurcation in two-cell system – No pure real eigenvalue that λ = 0 for | B | = 0 . . . . . . . . . . . . . . . . 114
B.6 The effect of diffusion coefficient and system size on the local chemical concentration . . . . . . . . 117
參考文獻 [1] J.H.E. Cartwright, Phy. Rev. E 61, 1149 (2000).
[2] J. P. Fahrenbach et al., J. Physiol. 583 2,565(2007).
[3] A.F. Taylor et al., Science 323, 614 (2009).
[4] Wei- Yin Chiang, Yue- Xian Li, and Pik- Yin Lai, Phy. Rev. E 84 041921(2011)
[5] Kawahara et. al, Biol. Rhythm Res. 33, 339 (2002).
[6] S. F. J. Langer et al., Res. Exp. Med. 199, 1 (1999).
[7] Y.Yamauchi et al., Biol. Cybernetics 86, 147 (2002).
[8] M. Oyamada et. al., Exp. Cell Res. 212, 351 (1994).
[9] W. Chen et al., Europhys. Lett. 86, 18001(2009).
[10] W.Y. Chiang, P.Y. Lai, and C.K. Chan, Phys. Rev. Lett. 106, 254102 (2011).
[11] Y. Shinagawa et al., Journal of Physiology 523.3, 593(2000).
[12] T. Christ et.,British Journal of Pharmacology. 156, 62 (2009).
[13] R. FitzHugh, Biophys.J. 1 445 (1961); J. Nagumo, S. Arimoto, and S. Yoshizawa,Proc IRE. 50, 2061 (1962).
[14] A. Hodgkin, A. Huxley, J. Physiol. 117 500(1952).
[15] L. Gammaitoni, P. Hanggi, P. Jung and F. Marchesoni, Rev. Mod. Phys. 70, 223(1998).
[16] R. A. Gray et al., Circulation. 91 2454-2469(1995).
[17] A. S. Pikovsky and J. K‥urths, Phy. Rev. Lett, 78, 775 (1997).
[18] Changsong Zhou, Jurgen K‥urths and Bambi Hu, Phy. Rev. Lett, 87,098101 (2001).
[19] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984).
[20] S.H.Strogatz et al., Physica D 31 143 (1988).
[21] H. Hong et al., Phys. Rev. E, 65, 026139 (2002).
[22] H. Hong et al., Phys. Rev. E 72, 036217 (2005).
[23] S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley Company, Reading,1995).
[24] H. Risken The Fokker-Planck Equation (Springer,Berlin, 1989).
[25] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag,Berlin, 1984).
[26] Wei-Min Liu, J. Mathematical analysis and application 182, 250(1994).
[27] A.R. Gingle, J. Cell. Sci. 20,1 (1976).
[28] M.H. Cohen, J. Theor. Biol. 31,101 (1971).
[29] A.A. Polezhaev et al., IEE Proc.-Syst. Biol. 1522 75 (2005) .
[30] B.M Ahmer, Mol. Microbiol. 52 (4): 933 (2004).
[31] S.D. Monte et al., PNAS 104, 47 18377(2007).
[32] T. Greor et al., Science 328, 1021(2010).
[33] M.B. Miller, Annu. Rev. Microbiol. 55: 165(2001).
[34] B.A. Hense et al., Nat. Rev. Microbiol. 5 (3): 230 (2007).
[35] T. Danino et al., Nature 463, 326 (2010).
[36] Y. X. Li, P.Y. Lai, unpublished.
[37] A.Pikovsky, M. Rosenblum and J. Kurths, Synchronization A universal concept in nonlinear sciences (Cambridge University press, Cambridge,2003).
[38] XPPAUT http://www.math.pitt.edu/ bard/xpp/xpp.html
[39] X. Zhan, P.Y. Lai, and C.K. Chan, Phys. Rev. E 84, 011907 (2011).
[40] H.Levine et al.,Phy Rev Lett.66 2400(1991).
[41] B.N. Vasiev et al.,Phy Rev Lett.73 3173(1994).
[42] A.A. Polezhaev et al., Phy Rev E 58 6328(1998).
[43] K.J. Lee et al., Phy Rev Lett. 76 1174(1996).
指導教授 黎璧賢(Pik-Yin Lai) 審核日期 2012-5-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明