博碩士論文 972402010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.235.105.97
姓名 黃郁婷(Yu-ting Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(A Study of Synchronized Burst Mechanisms in Neuronal Cultures)
相關論文
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ DNA在微通道的熱泳行為
★ 溫度及鈣動力學對離體心臟心率之影響★ 非線性控制方法來抑制離體心臟中心跳強弱交替的現象與溫度和心臟收縮的力對心律變異性的影響
★ Thermo-diffusiophoresis and their Thermodynamics★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
★ Effects of periodic and sustained stretching on cardiac culture★ 在外加振盪磁場中阻尼磁針的非線性動力學分析
★ 控制單一神經元的發放時間★ 非線性調控對心臟分岔現象的影響
★ 神經膠細胞對於神經網路同步爆發之影響★ The Effects of Sustain Stretching and Compression in the Inter-beat Interval and Beat Rate Variability of Embryonic Cardiomyocytes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 神經同步爆發是一種常見的自發性活動,但其運作原理尚未完全理解。爲了瞭解神經同步爆發的原理,我們利用多電極陣列來量測培養型神經細胞的網絡活動。我們發現同步爆發的形態與網絡發展的天數緊密相關,而不同發展天數的特徵可由藥理學的實驗重現。我們亦利用超高解析度的多電極陣列來研究同步爆發現象的時空分佈。實驗結果指出同步爆發並非隨機發生,細胞在網絡同步爆發時有其偏好的傳播路徑。另外,近期的研究指出神經膠細胞在神經發火行為中可被視為重要的影響因子。我們藉由調整不同神經膠細胞與神經細胞的比例來研究神經膠細胞對同步爆發的影響,證實膠細胞對同步爆發的重要性。上述實驗結果可由短期神經可塑性的均場模型來重現,說明了神經同步爆發與神經網絡的正回饋息息相關。
摘要(英) Synchronized bursting (SB) is a general spontaneous activity of neuronal cultures, however, their origin is still unclear. Here, we investigate the properties of these SBs in a culture on multi-electrode array (MEA) system. We find that characteristics of these SBs can be used to represent the different developmental stages of the cultures and these characteristics can be modified by pharmacological treatments. The spatiotemporal property of SBs and its reverberations are studied by a high-resolution MEA containing 4096 electrodes. The result indicates that SB fires with preferred pathways rather than completely random generation. Furthermore, we produce a neuronal cultures with different amounts of glial cells to study the effects of glia on SBs. The finding indicates that glia are interacting with neurons in the network to coordinate the firings. A mean-field model based on short term synaptic plasticity and recurrent connections has been developed to understand these characteristics. A phase diagram obtained from this model shows that networks exhibiting SBs are in an oscillatory state due to large enough positive feedback provided by synaptic facilitation and recurrent connections. Our finding suggests that networks with SBs have excessive recurrent connections and might have very little information processing capabilities.
關鍵字(中) ★ 同步爆發
★ 多電極陣列
★ 神經膠細胞
★ 短期神經可塑性
關鍵字(英) ★ Synchronized burst
★ MEA
★ glia
★ STSP
論文目次 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
謝誌. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Objective and Backgrounds . . . . . . . . . . . . . . 1
1.1 Introduction of Synchronized Burst . . . . . . . . . . 1
1.2 Neurophysiology . . . . . . . . . . . . . . . . . . . . 7
1.3 Neuron-Glia interaction . . . . . . . . . . . . . . . . 10
2 Material and Method . . . . . . . . . . . . . . . . . 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Neuronal Cultures . . . . . . . . . . . . . . . . . . . 16
2.2.1 Dissection and Cultures . . . . . . . . . . . . . . . . 16
2.2.2 Immunocytochemistry . . . . . . . . . . . . . . . . . 17
2.3 Multi electrode Array . . . . . . . . . . . . . . . . . 19
2.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Increasing signal to noise ratio . . . . . . . . . . . . 21
2.3.3 Recording Procedure . . . . . . . . . . . . . . . . . . 23
2.3.4 Signal Analysis . . . . . . . . . . . . . . . . . . . . . 24
2.4 CMOS-based Multi electrode Array . . . . . . . . . . 26
2.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Increasing signal to noise ratio . . . . . . . . . . . . 28
2.4.3 Recording Procedure . . . . . . . . . . . . . . . . . . 28
2.4.4 Signal analysis . . . . . . . . . . . . . . . . . . . . . 29
2.5 Patch Clamp . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Gigaseal recording . . . . . . . . . . . . . . . . . . . 32
2.5.3 Increasing signal to noise ratio . . . . . . . . . . . . 34
2.5.4 signal recording . . . . . . . . . . . . . . . . . . . . 34
2.6 Calcium image . . . . . . . . . . . . . . . . . . . . . 35
2.6.1 Calcium Fluorescence indicator . . . . . . . . . . . . 35
2.6.2 Recording Procedure . . . . . . . . . . . . . . . . . . 35
2.6.3 Signal analysis . . . . . . . . . . . . . . . . . . . . . 35
3 Reverberation Activities within A Synchronized Burst 37
3.1 Synchronized Burst Activities Vary with Time . . . . 37
3.1.1 Synchronized Burst Firing Histograms Changes in
Different Culture Stages . . . . . . . . . . . . . . . . 37
3.1.2 Features of Synchronized Burst in Different Culture
Stages . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Effect of Pharmacology Test in Reverberations . . . . 41
3.2.1 Effect of Magnesium . . . . . . . . . . . . . . . . . . 42
3.2.2 Effect of Bicuculline . . . . . . . . . . . . . . . . . . 42
3.2.3 Effect of Glutamate . . . . . . . . . . . . . . . . . . 42
3.3 Spatiotemporal Properties of Reverberations . . . . . 43
3.3.1 Reverberaiotn Activities in a Long-Lasting Synchronized
Burst . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Spatiotemporal Dynamics of Reverberations . . . . . 47
3.4 Glia Support Neuron Synchronization . . . . . . . . 51
3.4.1 Calcium Image Analysis . . . . . . . . . . . . . . . . 51
3.4.2 Electrophysiology Measurement . . . . . . . . . . . . 52
3.4.3 Effect of NMDA on a Glia Free Culture . . . . . . . 56
4 A Mean Firing short-term Synaptic Plasticity Model
for Reverberation Activity . . . . . . . . . . . . . . . 59
4.1 Vesicles Release and short-term Synaptic Plasticity . 59
4.2 Mean-Firing short-term Synaptic Plasticity Model . . 61
4.2.1 Mean Firing Rate . . . . . . . . . . . . . . . . . . . 61
4.2.2 Vesicle Depletion . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Synaptic Facilitation . . . . . . . . . . . . . . . . . . 64
4.2.4 Slow Modulation of Vesicle Recycling . . . . . . . . . 66
4.3 short-term Synaptic Plasticity of Reverberation Activities
. . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 STSP Model Without Slow Depletion Variables :
TM Model . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 STSP Model With A Slow Depletion Variable : TMX
Model . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.3 Simulating Reverberation Activities with The TMX
Model . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Experimental Prediction of Slow Depletion of Neurotransmitter
. . . . . . . . . . . . . . . . . . . . . . 79
5 Conclusion and Discussion . . . . . . . . . . . . . . . 81
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1 Equipments and Software . . . . . . . . . . . . . 89
A.2 Drugs and Chemicals . . . . . . . . . . . . . . . . 90
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.1 Culture Medium . . . . . . . . . . . . . . . . . . 91
B.2 Neurobasal Medium . . . . . . . . . . . . . . . . 91
B.3 Digestion Solution . . . . . . . . . . . . . . . . . 91
B.4 Internal Cellular Solution (ICS) . . . . . . . . . 92
B.5 Balanced Salt Solutions (BSS-)/(BSS+) . . . . 92
B.6 Borate Buffer Solution . . . . . . . . . . . . . . . 93
B.7 Coating Solution . . . . . . . . . . . . . . . . . . 93
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.1 MEA60 Coating Protocol . . . . . . . . . . . . . 95
C.2 BioChip Coating Protocol . . . . . . . . . . . . . 95
C.3 Coverslip Coating Protocol . . . . . . . . . . . . 96
C.4 Dissection and plating Protocol . . . . . . . . . 96
參考文獻 [1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: a universal concept in nonlinear sciences, vol. 12. Cambridge university press, 2003.
[2] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Physics Reports, vol. 469, no. 3, pp. 93-153, 2008.
[3] D. R. Chialvo and J. Jalife, Non-linear dynamics of cardiac excitation and impulse propagation,
Nature, vol. 330, no. 6150, pp. 749 752, 1987.
[4] K. Muramoto, M. Ichikawa, M. Kawahara, K. Kobayashi, and Y. Kuroda, Frequency of synchronous
oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks, Neuroscience letters, vol. 163, no. 2, pp. 163 165,
1993.
[5] R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM
Journal on Applied Mathematics, vol. 50, no. 6, pp. 1645 1662, 1990.
[6] W. Klimesch, Memory processes, brain oscillations and eeg synchronization, International Journal
of Psychophysiology, vol. 24, no. 1, pp. 61 100, 1996.
[7] G. Deuschl and A. Eisen, Recommendations for the practice of clinical neurophysiology (guidelines of the international federation of clinical neurophysiology), Electroencephalography and clinical neurophysiology. Supplement, 1999.
[8] M. Meister, R. Wong, D. A. Baylor, and C. J. Shatz, Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina, SCIENCE, vol. 252, no. 5008, pp. 939 943, 1991.
[9] R. Krahe and F. Gabbiani, Burst Firing in sensory systems, Nature Reviews Neuroscience, vol. 5, no. 1, pp. 13 23, 2004.
[10] E. Salinas and T. J. Sejnowski, Correlated neuronal activity and the flow of neural information,
Nature reviews neuroscience, vol. 2, no. 8, pp. 539 550, 2001.
[11] N. Axmacher, F. Mormann, G. Fernández, C. E. Elger, and J. Fell, Memory formation by neuronal synchronization, Brain research reviews, vol. 52, no. 1, pp. 170 182, 2006.
[12] E. Cohen, M. Ivenshitz, V. Amor-Baroukh, V. Greenberger, and M. Segal, Determinants of spontaneous activity in networks of cultured hippocampus, Brain research, vol. 1235, pp. 21 30, 2008.
[13] L. Jia, M. Sano, P.-Y. Lai, and C. Chan, Connectivities and synchronous Firing in cortical neuronal networks, Physical review letters, vol. 93, no. 8, p. 088101, 2004.
[14] D. A. Wagenaar, J. Pine, and S. M. Potter, An extremely rich repertoire of bursting patterns during the development of cortical cultures, BMC neuroscience, vol. 7, no. 1, p. 11, 2006.
[15] D. Ito, H. Tamate, M. Nagayama, T. Uchida, S. Kudoh, and K. Gohara, Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays, Neuroscience, vol. 171, no. 1, pp. 50 61, 2010.
[16] M. Ivenshitz and M. Segal, Neuronal density determines network connectivity and spontaneous activity in cultured hippocampus, Journal of neurophysiology, vol. 104, no. 2, pp. 1052 1060, 2010.
[17] E. Bi , G. Regalia, A. Menegon, G. Ferrigno, and A. Pedrocchi, The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study, PloS one,
vol. 8, no. 12, 2013.
[18] N. R. Wilson, M. T. Ty, D. E. Ingber, M. Sur, and G. Liu, Synaptic reorganization in scaled networks of controlled size,The Journal of Neuroscience, vol. 27, no. 50, pp. 13581 13589, 2007.
[19] R. Segev, I. Baruchi, E. Hulata, and E. Ben-Jacob, Hidden neuronal correlations in cultured networks, Physical Review Letters, vol. 92, no. 11, p. 118102, 2004.
[20] E. Hulata, I. Baruchi, R. Segev, Y. Shapira, and E. Ben-Jacob, Self-regulated complexity in cultured neuronal networks, Physical review letters, vol. 92, no. 19, p. 198105, 2004.
[21] J. H. Kim, R. Heo, J. H. Choi, and K. J. Lee, Dynamic transitions among multiple oscillators of synchronized bursts in cultured neural networks, Journal of Statistical Mechanics: Theory and Experiment, vol. 2014, no. 4, p. P04019, 2014.
[22] M. Geissler and A. Faissner, A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays, Journal of neuroscience methods, vol. 204, no. 2, pp. 262 272, 2012.
[23] T. Voigt, T. Opitz, and A. D. de Lima, Synchronous oscillatory activity in immature cortical network is driven by gabaergic preplate neurons, The Journal of Neuroscience, vol. 21, no. 22, pp. 8895 8905, 2001.
[24] G. Shahaf and S. Marom, Learning in networks of cortical neurons, The Journal of Neuroscience, vol. 21, no. 22, pp. 8782 8788, 2001.
[25] D. J. Bakkum, Z. C. Chao, and S. M. Potter, Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task, Journal of neural engineering, vol. 5, no. 3, p. 310, 2008.
[26] M. R. Dranias, H. Ju, E. Rajaram, and A. M. VanDongen, Short-term memory in networks of dissociated cortical neurons, The Journal of Neuroscience, vol. 33, no. 5, pp. 1940 1953, 2013.
[27] B. Lindner, J. Garc a-Ojalvo, A. Neiman, and L. Schimansky-Geier, Effects of noise in excitable systems, Physics Reports, vol. 392, no. 6, pp. 321 424, 2004.
[28] I. Belykh, E. de Lange, and M. Hasler, Synchronization of bursting neurons: what matters in the network topology, Physical review letters, vol. 94, no. 18, p. 188101, 2005.
[29] V. Volman, R. C. Gerkin, P.-M. Lau, E. Ben-Jacob, and G.-Q. Bi, Calcium and synaptic dynamicsunderlying reverberatory activity in neuronal networks, Physical biology, vol. 4, no. 2, p. 91, 2007.
[30] P. G. Haydon, Glia: listening and talking to the synapse, Nature Reviews Neuroscience, vol. 2, no. 3,pp. 185 193, 2001.
[31] M. V. Tsodyks and H. Markram, The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability, Proceedings of the National Academy of Sciences, vol. 94, no. 2, pp. 719 723, 1997.
[32] D. A. Wagenaar, Z. Nadasdy, and S. M. Potter, Persistent dynamic attractors in activity patterns of cultured neuronal networks, Physical Review E, vol. 73, no. 5, p. 051907, 2006.
[33] S. Herculano-Houzel and R. Lent, Isotropic fractionator: a simple, rapid method for the quanti cation
of total cell and neuron numbers in the brain, The Journal of neuroscience, vol. 25, no. 10, pp. 2518 2521, 2005.
[34] M. Pyka, C. Busse, C. Seidenbecher, E. D. Gundelfinger, and A. Faissner, Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay, Synapse, vol. 65, no. 1, pp. 41 53, 2011. [35] N. J. Allen and B. A. Barres, Neuroscience: glia-more than just brain glue, Nature, vol. 457, no. 7230, pp. 675 677, 2009.
[36] M. D. Boehler, B. C. Wheeler, and G. J. Brewer, Added astroglia promote greater synapse density and higher activity in neuronal networks, Neuron glia biology, vol. 3, no. 02, pp. 127 140, 2007.
[37] C. M. Anderson and R. A. Swanson, Astrocyte glutamate transport: review of properties, regulation, and physiological functions, Glia, vol. 32, no. 1, pp. 1 14, 2000.
[38] D. A. Sahlender, I. Savtchouk, and A. Volterra, What do we know about gliotransmitter release from astrocytes?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 369, no. 1654, p. 20130592, 2014.
[39] S. B. Achour and O. Pascual, Glia: the many ways to modulate synaptic plasticity, Neurochemistry international, vol. 57, no. 4, pp. 440 445, 2010.
[40] C. Henneberger, T. Papouin, S. H. Oliet, and D. A. Rusakov, Long-term potentiation depends on release of d-serine from astrocytes, Nature, vol. 463, no. 7278, pp. 232 236, 2010.
[41] M. E. Spira and A. Hai, Multi-electrode array technologies for neuroscience and cardiology, Nature nanotechnology, vol. 8, no. 2, pp. 83 94, 2013.
[42] C. Grienberger and A. Konnerth, Imaging calcium in neurons, Neuron, vol. 73, no. 5, pp. 862 885, 2012. 86
[43] R. C. Malenka and M. F. Bear, Ltp and ltd: an embarrassment of riches, Neuron, vol. 44, no. 1, pp. 5 21, 2004.
[44] R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Annual review of physiology, vol. 64,no. 1, pp. 355 405, 2002.
[45] D. M. Blitz, K. A. Foster, and W. G. Regehr, Short-term synaptic plasticity: a comparison of two synapses, Nature Reviews Neuroscience, vol. 5, no. 8, pp. 630 640, 2004.
[46] R. Jahn and D. Fasshauer, Molecular machines governing exocytosis of synaptic vesicles, Nature,
vol. 490, no. 7419, pp. 201 207, 2012.
[47] A. A. Alabi and R. W. Tsien, Synaptic vesicle pools and dynamics, Cold Spring Harbor perspectives in biology, vol. 4, no. 8, p. a013680, 2012.
[48] S. Cho and H. von Gersdor , Neuroscience: Faster than kiss-and-run, Nature, vol. 504, no. 7479, pp. 220 221, 2013.
[49] S. Watanabe, B. R. Rost, M. Camacho-Pérez, M. W. Davis, B. Söhl-Kielczynski, C. Rosenmund, and E. M. Jorgensen, Ultrafast endocytosis at mouse hippocampal synapses, Nature, vol. 504, no. 7479, pp. 242 247, 2013.
[50] Y.Wang, H. Markram, P. H. Goodman, T. K. Berger, J. Ma, and P. S. Goldman-Rakic, Heterogeneity in the pyramidal network of the medial prefrontal cortex, Nature neuroscience, vol. 9, no. 4, pp. 534 542, 2006.
[51] M. H. Hennig, Theoretical models of synaptic short term plasticity, Frontiers in computational neuroscience, vol. 7, 2013.
[52] B. Katz and R. Miledi, The role of calcium in neuromuscular facilitation, The Journal of physiology, vol. 195, no. 2, pp. 481 492, 1968.
[53] G. Mongillo, O. Barak, and M. Tsodyks, Synaptic theory of working memory, Science, vol. 319, no. 5869, pp. 1543 1546, 2008.
[54] J. M. Cortes, M. Desroches, S. Rodrigues, R. Veltz, M. A. Muñoz, and T. J. Sejnowski, Shortterm synaptic plasticity in the deterministic tsodyks markram model leads to unpredictable network
dynamics, Proceedings of the National Academy of Sciences, vol. 110, no. 41, pp. 16610 16615, 2013.
[55] M. De Pittà, V. Volman, H. Berry, and E. Ben-Jacob, A tale of two stories: astrocyte regulation of synaptic depression and facilitation, PLoS Comput. Biol, vol. 7, no. 12, p. e1002293, 2011.
[56] J. Sibille, J. Zapata, J. Teillon, and N. Rouach, Astroglial calcium signaling displays short-term plasticity and adjusts synaptic efficacy, Frontiers in Cellular Neuroscience, vol. 9, p. 189, 2015.
[57] J. L. Stobart and C. M. Anderson, Multifunctional role of astrocytes as gatekeepers of neuronal energy supply, Frontiers in cellular neuroscience, vol. 7, 2013.
[58] M. Popoli, Z. Yan, B. S. McEwen, and G. Sanacora, The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission, Nature Reviews Neuroscience, vol. 13, no. 1, pp. 22 37, 2012.
[59] P. K. Stanton, C. Bramham, and H. E. Scharfman, Synaptic plasticity and transsynaptic signaling.
Springer Science & Business Media, 2006.
[60] M. G. Mozhayeva, Y. Sara, X. Liu, and E. T. Kavalali, Development of vesicle pools during maturation of hippocampal synapses, The Journal of neuroscience, vol. 22, no. 3, pp. 654 665, 2002.
指導教授 陳志強(Chi-keung Chan) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明