博碩士論文 972402011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.232.99.123
姓名 洪啟航(Chi-Hang Hung)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Enhancement of spin-lattice coupling and reduction of incommensurate propagation vector by Co-doping in Mn3-xCoxTeO6 (x = 0, 1, 2) perovskite.)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用固態反應法成功製備出高純度且沒有雜項的錳碲氧化物,並利用鈷原子取代部份的錳原子而製備出樣品Mn3-xCoxTeO6 (x = 0, 1, 2)。我們利用變溫X光和變溫高解析中子散射實驗來檢視核結構是否有隨溫度改變,以及長程磁有序在樣品x = 1和2中的磁相轉變。結構精算軟體所分析出來的核結構顯示,鈷原子取代部份的錳原子,並不會改變其結構的對稱性,還是維持著六方晶系 的結構,即使環境溫度降至3 K,其結構的對稱性都維持不變。
從中子散射所得到的有序參數以及磁化率隨溫度的量測中,鈷的參雜 (x = 1改變至2),將使得樣品的反鐵磁相轉變溫度從35 K升高至40 K,並且發現錳/鈷原子在反鐵磁有序溫度下,其原子的位置有發生偏移的情形。Mn3TeO6中的晶格常數熱膨脹行為,可以利用聲子震盪(隨溫度四次方變化)的貢獻來描述,但是在Mn2CoTeO6和MnCo2TeO6的樣品中,其晶格常數的熱膨脹行為則必須用傳導電子(隨溫度二次方變化)的貢獻來描述。從磁化強度對溫度與磁化率對溫度的量測中發現在溫度約為185 K時,有另一個由於鈷磁矩排列所造成的磁相變,並且整個系統的磁疇會隨著外加磁場的增加而改變。
當鈷的含量由x = 1增加至x = 2時,不相稱的磁傳遞向量則由k = [0, 0, 0.481]改變至k = [0, 0, 0.515]。而對整體而言,不相稱的磁傳遞向量由在樣品Mn3TeO6中k = [0, 0, 0.4302],改變至在樣品MnCo2TeO6中k = [0, 0, 0.515],不相稱的磁傳遞向量隨著鈷的含量增加,往相稱的磁傳遞向量k = [0, 0, 0.5]靠近。藉由擬和磁結構可以得知,在單一核位置上的錳/鈷自旋,必須設定成分裂的兩組不同的磁矩,才能成功描述此系列材料的磁結構。
摘要(英) High quality polycrystalline samples of Mn3-xCoxTeO6 (x = 0, 1, 2) perovskite were synthesized using the solid-state reaction technique, that a portion of the Mn2+ ions are substituted by the Co2+ ions for samples x = 1, 2. The temperature dependence of X-ray and high resolution neutron diffraction were performed to check the nuclear phase transition and to detect the long-range antiferromagnetic ordering of the samples x = 1, 2. From the results of General Structure Analysis System (GSAS) refinement, the substitution of Co2+ for Mn2+ in Mn3TeO6 will not alters the symmetry of crystal structure (hexagonal, ), even the temperature was cooled down to 3 K.
Order parameters analysis of neutron diffraction and χ-T measurement show that the transition temperature of antiferromagnetic order are changed from 35 to 40 K for x = 1 to 2, and relocations of Mn/Co ions are observed below 35 and 40 K for Mn2CoTeO6 and MnCo2TeO6, respectively. The thermal variation of lattice constants of Mn3TeO6 can be described by T4 phonon term, but that of Mn2CoTeO6 and of MnCo2TeO6 can be described by T2 conduction electron term. From magnetization and susceptibility measurements, another magnetic transition is revealed for Mn2CoTeO6 and for MnCo2TeO6 at the temperature ~ 185 K due to the order of moments of Co2+, and the magnetic domains in the system are changed with the increasing of applied magnetic fields.
The incommensurate propagation vectors are shifted from k = [0, 0, 0.481] to [0, 0, 0.515] as the concentration of Co2+ increased from x = 1 to 2, and it changes from k = [0, 0, 0.4302] in Mn3TeO6 to k = [0, 0, 0.515] in MnCo2TeO6, that a reduction of k with increased concentration of Co is toward the commensurate propagation vector k = [0, 0, 0.5]. The unique Mn/Co spin is split into two magnetically different orbits through the refinement of magnetic structure.
關鍵字(中) ★ 反鐵磁
★ 中子散射
★ 多鐵材料
★ X光繞射
★ 長程磁有序
關鍵字(英) ★ Antiferromagnetism
★ Perovskite structure
★ Geometric frustration
★ Superexchange
★ Thermal expansion
★ Neutron diffraction
★ Long-range magnetic ordering
★ Incommensurate propagation vector
★ Short-range correlation
★ Multiferroic
★ X-ray diffraction
論文目次 Abstract in English
Abstract in Chinese
Acknowledgement
Table of Contents
List of figures
List of Tables

Chapter 1 Introduction.................................1
1-1 General Properties of Mn3TeO6......................1
1-2 Basic properties of A3BO6..........................5
1-3 Perovskite structure...............................12
References.............................................13

Chapter 2 Sample fabrication and instrumentations......15
2-1 Synthesis of Mn3-xCoxTeO6 (x=0, 1, 2)..............15
2-2 Instrumentations...................................16
2-2-1 Physical property measurement system (PPMS)......16
2-2-2 X-ray diffraction (XRD)..........................19
2-2-3 High resolution powder diffractometer at ANSTO-ECHIDNA........22
References.............................................24

Chapter 3 Theoretical considerations...................25
3-1 AC susceptibility..................................25
3-2 Antiferromagnetism.................................27
3-2-1 Magnetic moment..................................30
3-2-2 Superexchange interaction........................32
3-3 Theory of diffraction..............................33
3-3-1 X-ray diffraction................................33
3-3-2 Neutron diffraction..............................37
3-4 The Rietveld method................................43
3-5 Thermal expansion: The Grüneisen parameter.........49
3-5-1 Anharmonic crystal interactions..................49
References.............................................53

Chapter 4 Structure and magnetic characterization of Mn3TeO6......55
4-1 Structural related properties......................55
4-1-1 Structure of Mn3TeO6.............................55
4-1-2 Layer structure and equilateral triangular arrangement of Mn ions......62
4-1-3 Bond angle, bond length and bond valence varied with temperature......64
4-1-4 Thermal variation of lattice constants...........68
4-2 Magnetic characterization of Mn3TeO6...............70
4-2-1 Thermal variation of AC magnetic susceptibility..70
4-2-2 Thermal and applied field variation of magnetization......73
References.............................................76

Chapter 5 Structure and magnetic properties............77
5-1 Structural related properties with Co-doping.......77
5-1-1 Relocation of the Mn/Co ions.....................77
5-1-2 Bond angle, bond length and bond valence varied with temperature............................................92
5-1-3 Thermal expansion................................101
5-2 Magnetic properties of Mn3-xCoxTeO6 (x = 0, 1, 2)..105
5-2-1 Antiferromagnetic state transition with Co-doping......105
5-2-2 Magnetic domain ordering in Mn3-xCoxTeO6 (x = 1, 2)......111
5-2-3 FC and ZFC magnetization measurements............113
5-2-4 Hysteresis variation in Mn3-xCoxTeO6 (x = 1, 2)..117
References.............................................122

Chapter 6 Magnetic structure...........................123
6-1 Magnetic diffraction...............................123
6-2 Short-range antiferromagnetic correlation..........124
6-3 Magnetic structure of Mn3-xCoxTeO6 (x = 1, 2)......129
6-3-1 Long-range antiferromagnetic ordering............129
6-3-2 Incommensurate magnetic structure of Mn3-xCoxTeO6 (x = 1, 2)......135
6-4 Spin, and lattice coupling.........................140
6-5 Candidate of multiferroic material.................143
6-6 Conclusion.........................................146
References.............................................148
參考文獻 Chapter 1
[1] G. Bayer, Zeit. Kristallogr. 124 (1967) 131.
[2] H. Schulz and G. Bayer, Acta Cryst. (1971) B27, 815.
[3] R. E. Newnham, J. F. Dorrian, E. P. Meagher, Mater. Res. Bull. 5 (1970) 199.
[4] E. O. Wollan, W. C. Koehler, Physical Review 100 (1955) 545.
[5] S. A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, C. Ritter , N. V. Golubko, E. D. Politova, M. Weil, Mater. Res. Bull. 46 (2011) 1870.
[6] G. Blasse, W. Hordijk, J. Solid State Chem. 5, 395 (1972).
[7] L. I. Kosse, E. D. Politova, V. V. Chechkin, E. A. Myzgin, B. S. Medvedev, Yu, N. Venevtsev, Russ. J. Inorg. Chem. 18, 1616 (1982).
[8] S. A. Ivanov, R. Tellgren, C. Ritter, P. Nordblad, R.Mathieu, G. Andrè, N. V. Golubko, E. D. Politova, M. Weil, Mater. Res. Bull. 47, 63 (2010)
[9] I. Zivkovic, K. Prsa, O. Zaharko, H. Berger, J. Phys: Condens. Matter 22, 056002 (2010).
[10] K. Y. Choi, P. Lemmens, E. S. Choi, H. Berger, J. Phys: Condens. Matter 20, 505214 (2008)
[11] S. A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, E. Politova, G. André, Eur. J. Inorg. Chem. 2011, 4691 (2011).
[12] S. A. Ivanov, R. Mathieu, P. Nordblad, R. Tellgren, C. Ritter, E. Politova, G. Kaleva, A. Mosunov, S. Stefanovich, M. Weil, Chem. Mater. 25, 935 (2013).
[13] M. Hudl, R. Mathieu, S.A. Ivanov, M. Weil, V. Carolus, T. Lottermoser, M. Fiebig, Y. Tokunaga, Y. Taguchi, Y. Tokura, P. Nordblad, cond-mat/1108.4186.
N.V. Golubko, V.Yu. Proidakova, G.M. Kaleva, S.A. Ivanov, A.V. Mosunov, S.Yu. Stefanovich, N.V. Sadovskaya, E.D. Politova, P. Nordblad, Bull. Russ. Acad. Sci.: Phys. 74 (2010) 724;
S.A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, C. Ritter, N. Golubko, E.D. Politova, M. Weil, Mater. Res. Bull. 46 (2011) 1870.
[14] N. A. Spaldin, Top. Appl. Phys. 105 (2007) 175.
[15] D. I. Khomskii, Physics, 2 (2009) 20.
[16] G. A. Smolensky and I. E. Chupis, Sov. Phys. Usp., 1982, 25, 475.
[17] G. Blasse. J. Inorg. Nucl. Chem., 1965, 27, 993.
[18] Yu. N. Venevtsev, E. D. Politova and S. A. Ivanov, Ferro- and Antiferroelectrics of Barium Titanate Family, Chemistry, Moscow, 1985, p. 256 (in Russian).
[19] Yu. N. Venevtsev and V. V. Gagulin, Ferroelectrics, 1994, 162, 23.
[20] Yu. N. Venevtsev, V. V. Gagulin, and I. D. Zhitomorsky, Ferroelectrics, 1987, 73, 221.

Chapter 2
[1] Website, http://www.qdusa.com/products/ppms.html
[2] Jens Als-Nielsen and Des McMorrow, Elements of modern X-ray physics.
[3] K.-D. Liss, B. A. Hunter, M. E. Hagen, T. J. Noakes and S. J. Kennedy, Physica B 385-386, 1010-1012 (2006).
[4] ANSTO website, http://www.ansto.gov.au/research/bragg_institute/facilities/instruments

Chapter 3
[1] S. Elliot, The physics and chemistry of solids; Wiley: Chichester, 1998.
[2] J. König, H. Schoeller, G. Schön, Phys. Rev. Lett. 76(10), 1715 (1996).
[3] J. König, J Schmid, H. Schoeller, G. Schön, Phys. Rev. B 54(23), 16820 (1996).
[4] M. Braun, J. König, J. Martinek, Phys. Rev. B 70(19), 195345 (2004).
[5] M. Braun, J. König, J. Martinek, Europhys. Lett. 72(2), 294 (2005).
[6] I. Weymann, J. Barnas, J. König, J. Martinek, G. Schön, Phys. Rev. B 72(11), 113301 (2005).
[7] I. Weymann, J. König, J. Martinek, J Barnas, G. Schön, Phys. Rev. B 72(11), 115334 (2005).
[8] M. Braun, J. König, J. Martinek, Phys. Rev. B 74(7), 075328 (2006).
[9] R. Hornberger, S. Joller, G. Begemann, A. Donarini, M. Grifoni, Phys. Rev. B 77(24), 245313 (2008).
[10] Spaldin, N. A. (2003) Magnetic and Materials, Fundamentals and Device Applications. Cambridge University Press, pp. 7, 16-17.
[11] H. A. Kramers, Physica 1, 182 (1934).
[12] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
[13] Website, http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/xrayc.html
[14] J. Chadwick, Nature (London) 129 312 (1932).
[15] W. M. Elsasser, C. R. Acad. Sci. Paris 202 1029 (1936).
[16] H. Halban and P. Preiswerk, C. R. Acad. Sci. Paris 203 73 (1936).
[17] D. P. Mitchell and P. N. Powers, Phys. Rev. 50 486 (1936).
[18] F. Bloch, Phys. Rev. 50 259 (1936).
[19] L. W. Alvarez and F. Bloch, Phys. Rev. 57 111 (1940).
[20] O. Halpern and M. H. Johnson, Phys. Rev. 55 898 (1939).
[21] L. Néel, Ann. Phys. (Paris) 17 5 (1932).
[22] C. G. Shull and J. S. Smart, Phys. Rev. 76 1256 (1949).
[23] G. E. Bacon, Neutron diffraction, 3rd edition (Oxford University Press, Oxford, 1975).
[24] http://isaacs.sourceforge.net/phys/chem.html
[25] A. E. Lord, J. Phys. Chem. Solids 28 517 (1967)

Chapter 4
[1] G. Blasse, W. Hordijk, J. Solid State Chem. 5, 395 (1972).
[2] J. L. Her, C. C. Chou, Y. H. Matsuda, K. Kindo, H. Berger, K. F. Tseng, C. W. Wang, W. H. Li, and H. D. Yang, Phsyical Review B 84, 235123 (2011).
[3] K. Y. Choi, P. Lemmens, E. S. Choi, H. Berger, J. Phys: Condens. Matter 20, 505214 (2008)
[4] Sergey Ivanov, Per Nordblad, Roland Mathieu, Roland Tellgren, Ekaterina Politova, and Dilles André, Eur. J. Inorg. Chem. 2011, 4691-4699.
[5] E.O. Wollan, W.C. Koehler, Physical Review 100 (1955) 545.
[6] N. E. Brese and M. O’Keeffe, Acta Cryst. (1991) B47, 192-197
[7] I. D. Brown and D. Altermatt, Acta Cryst. (1985). B41, 244-247
[8] I. D. Brown, Acta Cryst. (1977). B33, 1305-1310
[9] M. O′Keeffe, Acta Cryst. (1990). A46, 138-142
[10] R. S. Krishnan, R. Srinivasan, and S. Devanarayanan, Thermal expansion of crystals.
[11] Yingying Tang, Zhangzhen He, Wenbin Guo, Suyun Zhang, and Ming Yang, J. Am. Chem. Soc., 1992, 114 (18), pp 6974–6979

Chapter 5
[1] M. Weil, Acta Crystallographica Section E 62 (2006) i244.
[2] S.A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, C. Ritter, N.V. Golubko, E.D. Politova, M. Weil, Materials Research Bulletin 46 (2011) 1870.
[3] Sōshin Chikazumi and Stanley H. Charap, Physics of magnetism.
[4] E.O. Wollan, W.C. Koehler, Physical Review 100 (1955) 545.
[5] G. Blasse, J. Inorg. Nucl. Chem., 1965, 27, 993.
[6] Yu. N. Venevtsev, E. D. Politova and S. A. Ivanov, Ferro- and Antiferroelectrics of Barium Titanate Family, Chemistry, Moscow, 1985, p. 256 (in Russian).
[7] J.B. Goodenough, Physical Review 100 (1955) 564.
[8] J. Kanamori, Journal of Physics and Chemistry of Solids 10 (1959) 87.
[9] P. Strobe, A. Ibarra-Palos, M. Pernet, S. Zouari, W. Cheikh-Rouhou, A. Cheikh- Rouhou, Physica Status Solidi (C) 1 (2004) 1625.

Chapter 6
[1] Chin-Wei Wang, Chun-Ming Wu, Chi-Yen Li, Sunil K Karna, Chien-Kang Hsu, Carissa H C Li, Wen-Hsien Li, Chun-Chen Yu, Chun-Pin Wu, Hsiung Chou and Jeffrey W Lynn, J. Phys.: Condens. Matter 22 (2010) 246002.
[2] Juan Rodriguez-Carvajal, An introduction to the program FullProf 2000.
[3] S. A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, C. Ritter , N. V. Golubko, E. D. Politova, M. Weil, Mater. Res. Bull. 46 (2011) 1870.
[4] S. A. Ivanov, R. Mathieu, P. Nordblad, E. Politova, R. Tellgren, C. Ritter, V. Proidakova, J. Magn. Magn. Mater. 324 (2012) 1637-1644.
[5] Sōshin Chikazumi, Stanley H. Charap, Physics of Magnetism.
[6] J. Kreisel, M. Kenzelman, Europhys. News 40 (2009) 17.
指導教授 李文献(Wen-Hsien Li) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明