博碩士論文 972402601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:142 、訪客IP:3.138.204.208
姓名 徐柏瑋(Confesor, Mark Nolan Platero)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Thermo-diffusiophoresis and their Thermodynamics)
相關論文
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ DNA在微通道的熱泳行為
★ 溫度及鈣動力學對離體心臟心率之影響★ 非線性控制方法來抑制離體心臟中心跳強弱交替的現象與溫度和心臟收縮的力對心律變異性的影響
★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors★ Effects of periodic and sustained stretching on cardiac culture
★ 在外加振盪磁場中阻尼磁針的非線性動力學分析★ 控制單一神經元的發放時間
★ 非線性調控對心臟分岔現象的影響★ 神經膠細胞對於神經網路同步爆發之影響
★ A Study of Synchronized Burst Mechanisms in Neuronal Cultures★ The Effects of Sustain Stretching and Compression in the Inter-beat Interval and Beat Rate Variability of Embryonic Cardiomyocytes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱泳及擴散泳分別指粒子在溫度及濃度梯度下之移動,而熱泳及擴散泳之耦合可衍生成熱擴散阱(TDT)。本論文以單粒子追蹤技術去探討TDT之物理機制。我們發現TDT之位能阱在平行加熱表面及垂直加熱表面方向有不同的對稱性,同時亦提出一唯象模型來了解TDT之行為。更發現平行加熱面上的捕捉力與被捕捉粒子的大小平方成正比,從而推斷捕捉力是從滲透壓梯度引起。論文第二部分探索在穩定非平衡体系中隨機軌跡之可逆性及熱交換漲落。我們發現粒子軌跡遵守類似細部平衡之關係,並以實驗驗證之。同時我們對熱傳輸提出一漲落關係。
摘要(英) Thermophoresis and Diffusiophoresis refers to particle migration due to the presence of a temperature and solute concentration gradient respectively.Coupling of Thermophoresis and Diffusiophoresis leads to trapping of colloidal particles in polymer solutions, termed thermodiffusiophoretic trap (TDT). In the first part of this thesis I study the physical mechanism of the TDT via single particle tracking to probe the trapping potential of the TDT. Due to the presence of a heating surface, I found that the trapping potentials to have different form with a symmetric potential for the in-plane trapping and a semi-Mexican hat potential for the transverse trapping. A phenomological model is proposed to understand this trapping behavior. Moreover I found that the in-plane trapping force scaling with a2 for both steadystate and non-steady state measurements where a is the colloid radius. This result suggest that the trapping force is due to the osmotic pressure gradient across the colloid which is caused by the concentration gradient of the solute particles. In the second part of the thesis I study reversibility of stochastic trajectories and heat exchange fluctuation of a particle in a Non-Equilibrium Steady State (NESS) where the NESS is formed due to the presence of a spatial gradient of an intensive thermodynamic variable. Extending the work of Sekimoto on Stochastic Energetics, and under this force balance condition we found that a Detailed Balance (DB) like relation is still obeyed by the particle trajectories. I verified experimentally this DB-like relation for a particle confined in a TDT and a particle locally trapped by an Optical tweezer but with a net heat flux across it (OTT). Furthermore, a Fluctuation like relation is proposed for the heat transfer fluctuation under a mean heat flux which I have experimentally verified for the OTT system.
關鍵字(中) ★ 熱泳
★ 擴散泳
★ 可逆性
★ 非平衡傳輸
關鍵字(英) ★ Thermophoresis
★ Diffusiophoresis
★ Reversibility
★ Non-equilibrium Transport
論文目次 Contents iv
List of Figures vi
1 Introduction 1
1.1 Phoretic Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Thermophoresis . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Diffusiophoresis . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Multi-component thermal diffusion . . . . . . . . . . . . . 7
1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 9
2 Physical mechanism of the thermo-diffusiophoretic trap 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Experimental design and methodology . . . . . . . . . . . . . . . 13
2.2.1 Optical setup . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Temperature measurement . . . . . . . . . . . . . . . . . . 18
2.2.4 Single Particle Tracking . . . . . . . . . . . . . . . . . . . 18
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 radial-trapping . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 z-trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Phoretic force dependence on bead size . . . . . . . . . . . 38
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 Reversibility and Heat Exchange Fluctuation of a Particle in a
NESS 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Experimental design and methodology . . . . . . . . . . . . . . . 45
3.2.1 Dual optical tweezer set-up . . . . . . . . . . . . . . . . . 47
3.2.2 Optical trap calibration . . . . . . . . . . . . . . . . . . . 50
3.2.3 Sample preparation and Experiment procedure . . . . . . . 52
3.2.4 Calculation of transition probabilities . . . . . . . . . . . . 52
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Detailed Balance and reversibility for spatially uniform systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Reversibility for system under spatial gradients . . . . . . 57
3.3.3 Heat exchange rate probed by a colloidal bead . . . . . . . 65
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Conclusion and perspective 72
4.1 On the physical mechanism of the TDT . . . . . . . . . . . . . . . 72
4.1.1 Outlook on future experiments . . . . . . . . . . . . . . . 74
4.2 On the stochastic thermodynamics of phoretic transports . . . . . 75
4.2.1 Outlook on future experiments . . . . . . . . . . . . . . . 77
4.3 Perspective on the Non-equilibrium osmotic interaction of colloids 77
Appendix A: Synthesizing the metallic mirror 79
Appendix B: Single particle tracking IDL code 81
Appendix C: Transition probabilities IDL code 88
References 95
參考文獻 [1] Wurger, A. Rep. Prog. Phys. 73, 126601 (2010). viii, 2, 5, 6, 28
[2] deGroot, S. R. and Mazur, P. Non-Equilibrium Thermodynamics. Dover
Publications, Inc., New York, (2011). 1, 2, 3, 5, 7, 40, 41, 55
[3] Ritort, F. Comptes Rendus Physique 8, 528–539 (2007). 1, 26, 54, 68
[4] Cross, M. and Greenside, H. Pattern Formation and Dynamics in Nonequi-
librium Systems. Cambridge University Press, London, (2009). 1
[5] Onsager, L. Phys. Rev. 37, 405–426 (1931). 1
[6] Onsager, L. Phys. Rev. 38, 2265–2279 (1931). 1
[7] Miller, D. Chem. Rev. 60, 15–37 (1960). 1
[8] Anderson, J. L. Ann. Rev. of Fluid Mech. 21, 61–99 (1989). 2, 4, 5, 38, 41,
72
[9] Piazza, R. J.Phys.: Condens. Matter 16, S4195S4211 (2004). 2
[10] Piazza, R. and Parola, A. J. Phys.: Condens. Matter 20, 153102 (2008). 2,
13
[11] Duhr, S. and Braun, D. PNAS 103, 19678 (2006). 3, 7, 14, 18, 23, 41
[12] Astumian, R. D. PNAS 104, 3–4 (2007). 3, 5, 27
[13] Duhr, S. and Braun, D. Phys. Rev. Lett. 96, 168301 (2006). 3
[14] Dhont, J., Wiegand, S., Duhr, S., and Braun, D. Langmuir 23, 1674–1683
(2007). 3
[15] Bringuier, E. and Bourdon, A. Phys. Rev. E. 67, 011404 (2003). 3
[16] Ruckenstein, E. J. Colloid Interface Sci. 83, 77 (1981). 3
[17] Piazza, R. Soft Matter 4, 1740–1744 (2008). 4, 27, 41, 65
[18] Rasuli, S. and Golestanian, R. Phys. Rev. Lett. 101, 108301 (2008). 4
[19] Braibanti, M., Vigolo, D., and Piazza, R. Phys. Rev. Lett. 100, 108303
(2008). 4
[20] Weinert, F. and Braun, D. Phys. Rev. Lett. 101, 168301 (2008). 4
[21] Wurger, A. C. R. Mecanique (2013). 4
[22] Duhr, S. and Braun, D. arXiv:cond-mat/0609554v1 (2006). 5
[23] Palacci, J., Abecassis, B., Cottin-Bizonne, C., Ybert, C., and Bocquet, L.
Phys. Rev. Lett. 104, 138302 (2010). 5
[24] Abecassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A., and Bocquet, L.
Nature Materials 7, 785789 (2008). 5
[25] Abecassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A., and Bocquet, L.
New J. Phys. 11, 075022 (2009). 5
[26] Cordova-Figueroa, U. M. and Brady, J. Phys. Rev. Lett. 100, 158303 (2008).
5, 6, 39
[27] Julicher, F. and Prost, J. Eur. Phys. J. E 29, 2736 (2009). 5
[28] Anderson, J. L., Lowell, M. E., and Prieve, D. C. J. Fluid Mech. 117,
107–121 (1982). 5, 29
[29] Astumian, R. D. and Brody, R. J Phys Chem B. 113, 11459–62 (2009). 6,
43, 44, 57, 60, 75, 76
[30] Reinmller, A., Schope, H. J., and Palberg, T. Langmuir 6, 17381742 (2013).
6, 39
[31] Ghorayeb, K. and Firoozabadi, A. AIChE J. 46, 883–891 (2000). 7
[32] Gans, B., Kita, R., Muller, B., and Wiegand, S. J. Chem. Phys. 118, 8073
(2003). 7
[33] Gans, B., Kita, R., Wiegand, S., and Luettmer-Strathmann, J. Phys. Rev.
Lett. 91, 245501 (2003). 7
[34] Kita, R., Wiegand, S., and Luettmer-Strathmann, J. J. Chem. Phys. 121,
3874 (2004). 7, 8, 14
[35] Jiang, H., Wada, H., Yoshinaga, N., and Sano, M. Phys. Rev. Lett. 102,
208301 (2009). 8, 11, 12, 14, 18, 23, 24, 72
[36] Crocker, J. C., Matteo, J. A., Dinsmore, A. D., and Yod, A. G. Phys. Rev.
Lett. 82, 4352–4355 (1999). 10
[37] Moffitt, J. R., Chemla, Y. R., Smith, S. B., and Bustamante, C. Annual
Review of Biochemistry 77, 205–228 (2008). 10
[38] Smith, S. B., Finzi, L., and Bustamante, C. Science 258, 1122–1126 (1992).
10
[39] Pethig, R. Biomicro
uidics 4, 022811 (2010). 10
[40] Braun, D., Goddard, N. L., and Libchaber, A. Phys. Rev. Lett. 91, 158103
(2003). 11
[41] Deng, H. D., Li, G., Liu, H. Y., Dai, Q. F., Wu, L. J., Lan, S., Gopal, A. V.,
Trofimov, V. A., and Lysak, T. M. Opt Express 20, 9616–23 (2012). 11
[42] Maeda, Y. T., Buguin, A., and Libchaber, A. Phys. Rev. Lett. 107, 038301
(2011). 11, 12, 18, 23, 24, 74
[43] Putnam, S. A. and Cahill, D. G. Langmuir 21, 53175323 (2005). 13
[44] Giglio, M. and Vendramini, A. Appl. Phys. Lett. 25, 555 (1974). 14
[45] K¨ohler, W. and Sch¨afer, R. New Developments in Polymer Analytics II.
Springer, Berlin, (2000). 14
[46] Qian, H., Sheetz, M. P., and Elson, E. L. Biophys. J. 60, 910–921 (1991).
18
[47] Arines, J. and Ares, J. OPTICS J. 27, 497 (2002). 18
[48] Jenkins, F. and White, H. Fundamentals of Optics; 4 edition. McGraw-Hill
Science/Engineering/Math, USA, (2011). 18, 20
[49] Rogers, S. S., Waigh, T. A., Zhao, X., and Lu, J. R. Phys. Biol. 4, 220227
(2007). 18
[50] Zhang, Z. and Menq, C. H. Applied Optics 47, 2361 (2008). 20
[51] Speidel, M., Jon´aˇs, A., and Florin, E.-L. Optics Letters 28, 69–71 (2003).
20
[52] Holyst, R., Bielejewska, A., Szymanski, J., Wilk, A., Patkowski, A., Gapinski,
J., Zywocinski, A., Kalwarczyk, T., Kalwarczyk, E., Tabaka, M.,
Ziebacz, N., and Wieczorek, S. Phys. Chem. Chem. Phys. 11, 9025 (2009).
32, 38, 73
[53] Prieve, D. Adv. Colloid and Interface Science 82, 93–125 (1999). 32
[54] Seifert, U. Phys. Rev. Lett. 95, 040602 (2005). 40
[55] Jarzynski, C. Eur. Phys. J. B 64, 331340 (2008). 40
[56] Bustamante, C., Liphardt, J., and Ritort, F. Phys. Td. 58, 43–48 (2005). 41
[57] Seifert, U. Eur. Phys. J. B 64, 423–431 (2008). 41
[58] Jarzynski, C. Phys. Rev. Lett. 78, 2690 (1997). 41
[59] Gallavotti, G. and Cohen, E. Phys. Rev. Lett. 71, 2401 (1995). 41, 68
[60] Seitaridou, E., Inamdar, M., Phillips, R., Ghosh, K., and Dill, K. J. Phys.
Chem. B 111, 2288–2292 (2007). 41, 42
[61] Ghosh, K., Dill, K., Inamdar, M., Seitaridou, E., and Phillips, R. Am. J.
Phys. 74, 123–133 (2006). 42, 43
[62] Criado-Sanchoa, M., Casas-Vzquezb, J., and Joub, D. Phys. Lett. A 373,
33013303 (2009). 42
[63] Sekimoto, K. Stochastic Energetics. Springer-Verlag, Berlin, (2010). 44, 54,
66, 75
[64] Jackson, J. D. Classical Electrodynamics. Wiley, New York, (1998). 45
[65] Ashkin, A. Phys. Rev. Lett. 24, 156159 (1970). 45
[66] Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. Opt. Lett. 11,
288290 (1986). 45
[67] W¨ordemann, M. Structured Light Fields: Applications in Optical Trapping,
Manipulation, and Organisation (Springer Theses). Springer, New York,
(2012). 46, 47, 49
[68] Nelson, P. Biological Physics. W. H. Freeman, New York, (2007). 46
[69] Svoboda, K. and Block, S. M. Annu. Rev. Biophys. Biomol. Struct. 23,
247–85 (1994). 46, 47, 49
[70] Visscher, K., Gross, S. P., and Block, S. M. IEEE J. Sel. Top. Quant. Elect.
2, 1066 (1996). 47
[71] Hale, G. and Querry, M. Appl. Opt. 12, 555 (1973). 49
[72] Gibson, J. L., Duncan, B. D., Watson, E. A., and Loomis, J. S. Opt. Eng.
43, 23122321 (2004). 49
[73] Shaevitz, J. W. A Practical Guide to Optical Trapping.
https://sites.google.com/site/shaevitzlab/links, (2006). 50
[74] Lanon, P., Batrouni, G., Lobry, L., and Ostrowsky, N. Europhys. Lett. 54,
28–34 (2001). 54
[75] Volpe, G., Helden, L., Brettschneider, T., Wehr, J., and Bechinger, C. Phys.
Rev. Lett. 104, 170602 (2010). 54
[76] Doi, M. and Edwards, S. F. The Theory of Polymer Dynamics. Clarendon
Press, Oxford, (1999). 55, 56
[77] Bier, M., Der´enyi, I., Kostur, M., and Astumian, R. D. Phys. Rev. E 59,
6422 (1999). 60, 71
[78] Feitosa, K. and Menon, N. Phys. Rev. Lett. 92, 164301 (2004). 69
[79] Garnier, N. and Ciliberto, S. Phys. Rev. E 71, 060101 (2005). 69
[80] Wurm, F. and Kilbinger, A. Angew Chem Int Ed Engl. 45, 8412–21 (2009).
74
[81] K¨ummel, F., B. t. Hagen, R. W., Buttinoni, I., R. Eichhorn, G. V., L¨owen,
H., and Bechinger, C. Phys. Rev. Lett. (accepted) (2013). 74
[82] Golestanian, R., Liverpool, T., and Ajdari, A. Phys. Rev. Lett. 94, 220801
(2005). 74
[83] Jiang, H. R., Yoshinaga, N., and Sano, M. Phys. Rev. Lett. 105, 268302
(2010). 74, 77
[84] Buttinoni, I., Volpe, G., K¨ummel, F., Volpe, G., and Bechinger, C. J. Phys.:
Condens. Matter 24, 284129 (2012). 74, 77
[85] Ebbens, S. J. and Howse, J. R. Soft Matter 6, 726–738 (2010). 74
[86] Dzubiella, J., Lowen, H., and Likos, C. N. Phys. Rev. Lett. 91, 248301
(2003). 77
[87] Khair, A. and Brady, J. Proc. R. Soc. A 463, 223 (2007). 78
指導教授 陳志強(Chan,Chi Keung) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明