博碩士論文 972404005 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:
姓名 張至堯(Chih-Yao Chang)  查詢紙本館藏   畢業系所 生命科學系
(Involvement of Arc1p biotinylation and a WHEP domain on aaRS activity)
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 之前的研究發現細胞質methionyl-tRNA synthetase (MetRS) 及 glutamyl-tRNA synthetase (GluRSc)會與Arc1p形成一個三元複合體,藉此增強MetRS與GluRS胺醯化tRNA的能力,另外也藉由複合體的形成調控MetRS與GluRSc在細胞內的分布,分離的GluRSc及MetRS會分別進入粒腺體及細胞核內作用。Arc1p的結構包含三個區段,N端主要是與MetRS及GluRSc結合,M及C端則組合成一個tRNA結合區段。最近的研究指出,Arc1p的N端區段有一個SSKD序列,其中K86會經由轉錄後修飾作用加上生物素(biotin),目前還不清楚生物素化對Arc1p的結構及功能有何影響。我們的研究結果顯示:在正常生長溫度下(30oC),Arc1p會被生物素化(15%),經修飾後的Arc1p仍可正常地與MetRS 及 GluRSc形成複合體,也可與tRNA結合;但是,在高溫(37oC)環境下,Arc1p幾乎不會被生物素化,未被生物素化的Arc1p較被生物素化的Arc1p更穩定,因此在高溫下能更有效率地提升GluRSc及MetRS的催化能力。或許Arc1p可藉由生物素化或去生物素化來調節其蛋白質結構及功能,對抗環境溫度的改變。
某些真核生物的aminoacyl-tRNA合成酶(aaRSs)存在一段WHEP區段和該區段常與tRNA或蛋白質結合。我們研究發現線蟲細胞質和線粒體的Glycyl-tRNA synthetase(CeGlyRS)由相同的基因(CeGRS1)不同的起始碼轉譯而成。其結果是,細胞質形式蛋白質其N端具有WHEP區段,而其線粒體形式蛋白質具有mitochondrial targeting signal (MTS; aa 1~20) 及附加區段 appended domain (aa 21~64)。在實驗中得知兩種形式的CeGlyRS均能辨認及使用線蟲的細胞質tRNAsGly,線粒體形態的CeGlyRS比細胞質形態的CeGlyRS更能有效辨認及使用線蟲的線粒體tRNAGly(缺少TψC loop)。儘管WHEP域本身缺乏tRNA的結合能力,但去除此區段會降低了酵素的催化效率。最有趣的是,去除WHEP區段的CeGlyRS具有更高的熱穩定性和稍低的結構彈性。我們的研究顯示WHEP區段可能具有調節酵素的動態結構和活性的功能。
摘要(英) Previous studies showed that cytoplasmic methionyl-tRNA synthetase (MetRS) and glutamyl-tRNA synthetase (GluRSc) form a ternary complex with an aaRS cofactor, Arc1p, thereby enhancing their aminoacylation activities. In addition, Arc1p also regulates the subcellular distribution of these two associated enzymes. Upon dissociation from the ternary complex, GluRSc and MetRS are targeted into the mitochondria and nucleus for functioning. The structure of Arc1p can be divided into three domains, N, M, and C domains. The N domain interacts with GluRSc and MetRS, while the M plus C domains form a non-specific tRNA-binding domain. A recent report demonstrated that a SSKD motif in the N domain of Arc1p can be biotinylated through post-translational modification in vivo. However, the biological significance of this modification remained unclear. We show herein that Arc1p was biotinylated (15%) under normal growth conditions. However, biotinylation had little effect on its ability to interact with tRNA or GluRSc/MetRS. In contrast, Arc1p was almost biotin free at a high temperature. Non-biotinylated Arc1p was more heat-tolerant and more efficiently promoted the aminoacylation activity of GluRSc. Perhaps the structure and function of Arc1p can be modulated via biotinylation in response to temperature changes.
WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases (aaRSs) and play roles in tRNA or protein binding. We show herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. As a result, the cytoplasmic form possessed an N-terminal WHEP domain, while its mitochondrial counterpart possessed an extra N-terminal sequence (aa 1~64) consisting of a mitochondrial targeting signal (MTS; aa 1~20) and an appended domain (aa 21~64). Cross-species rescue assays showed that this dual-functional gene effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 (which encodes GlyRS) knockout strain. While both forms of CeGlyRS efficiently charged the cytoplasmic tRNAsGly of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNAGly isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA-binding activity, deletion of this domain reduced the enzyme’s catalytic efficiency. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests the WHEP domain may act in cis to regulate the enzyme’s dynamic structure and activity.
關鍵字(中) ★ 生物素化
★ 轉錄後修飾
★ 蛋白質合成
★ 線蟲
★ 神經退化
關鍵字(英) ★ aminoacyl-tRNA synthetase
★ biotinylation
★ post-translational modification
★ protein synthesis
★ tRNA
★ Caenorhabditis elegans
★ CMT disease
★ neurologic disorder
★ WHEP domain
論文目次 誌 謝 i
摘 要 ii
Abstract iv
Table of Contents vi
List of Table and Figures viii
Overall introduction 1
Chapter I - Modulating the structure and function of an aminoacyl-tRNA synthetase cofactor by biotinylation 4
Abstract 5
Introduction 5
Materials and Methods 7
Results 10
Discussion 17
Chapter II - A WHEP domain regulates the dynamic structure and activity of Caenorhabditis elegans glycyl-tRNA synthetase 20
Abstract 21
Introduction 21
Materials and Methods 23
Results 26
Discussion 32
Summary 35
References 37
Table and Figures 46
Appendix 63
參考文獻 1. Zempleni, J., Wijeratne, S. S., and Hassan, Y. I. (2009) Biotin. Biofactors 35, 36-46
2. Tong, L. (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70, 863-891
3. Chapman-Smith, A., and Cronan, J. E., Jr. (1999) In vivo enzymatic protein biotinylation. Biomol Eng 16, 119-125
4. Cronan, J. E., Jr. (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265, 10327-10333
5. Hoja, U., Wellein, C., Greiner, E., and Schweizer, E. (1998) Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNAGlnCAG. Eur J Biochem 254, 520-526
6. Sumper, M., and Riepertinger, C. (1972) Structural relationship of biotin-containing enzymes. Acetyl-CoA carboxylase and pyruvate carboxylase from yeast. Eur J Biochem 29, 237-248
7. Kim, H. S., Hoja, U., Stolz, J., Sauer, G., and Schweizer, E. (2004) Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae. J Biol Chem 279, 42445-42452
8. Mirande, M. (2010) Processivity of translation in the eukaryote cell: role of aminoacyl-tRNA synthetases. FEBS Lett 584, 443-447
9. Wang, C. C., and Schimmel, P. (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274, 16508-16512
10. Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., and Wang, C. C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283, 30699-30706
11. Grant, T. D., Snell, E. H., Luft, J. R., Quartley, E., Corretore, S., Wolfley, J. R., Snell, M. E., Hadd, A., Perona, J. J., Phizicky, E. M., and Grayhack, E. J. (2012) Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase. Nucleic Acids Res 40, 3723-3731
12. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15, 5437-5448
13. Frechin, M., Enkler, L., Tetaud, E., Laporte, D., Senger, B., Blancard, C., Hammann, P., Bader, G., Clauder-Munster, S., Steinmetz, L. M., Martin, R. P., di Rago, J. P., and Becker, H. D. (2014) Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex. Mol Cell 56, 763-776
14. Carter, C. W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62, 715-748
15. Burbaum, J. J., and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266, 16965-16968
16. Giege, R. (2006) The early history of tRNA recognition by aminoacyl-tRNA synthetases. J Biosci 31, 477-488
17. Giege, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26, 5017-5035
18. Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279, 13778-13785
19. Mazauric, M. H., Reinbolt, J., Lorber, B., Ebel, C., Keith, G., Giege, R., and Kern, D. (1996) An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. Eur J Biochem 241, 814-826
20. Ostrem, D. L., and Berg, P. (1970) Glycyl-tRNA synthetase: an oligomeric protein containing dissimilar subunits. Proc Natl Acad Sci U S A 67, 1967-1974
21. Mazauric, M. H., Keith, G., Logan, D., Kreutzer, R., Giege, R., and Kern, D. (1998) Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Eur J Biochem 251, 744-757
22. Sakurai, M., Ohtsuki, T., and Watanabe, K. (2005) Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic Acids Res 33, 1653-1661
23. Krajewski, K. M., Lewis, R. A., Fuerst, D. R., Turansky, C., Hinderer, S. R., Garbern, J., Kamholz, J., and Shy, M. E. (2000) Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A. Brain 123 ( Pt 7), 1516-1527
24. Antonellis, A., Ellsworth, R. E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S. Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L. T., Sivakumar, K., Ionasescu, V., Funalot, B., Vance, J. M., Goldfarb, L. G., Fischbeck, K. H., and Green, E. D. (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72, 1293-1299
25. Motley, W. W., Talbot, K., and Fischbeck, K. H. (2010) GARS axonopathy: not every neuron′s cup of tRNA. Trends Neurosci 33, 59-66
26. Nangle, L. A., Zhang, W., Xie, W., Yang, X. L., and Schimmel, P. (2007) Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci U S A 104, 11239-11244
27. Achilli, F., Bros-Facer, V., Williams, H. P., Banks, G. T., AlQatari, M., Chia, R., Tucci, V., Groves, M., Nickols, C. D., Seburn, K. L., Kendall, R., Cader, M. Z., Talbot, K., van Minnen, J., Burgess, R. W., Brandner, S., Martin, J. E., Koltzenburg, M., Greensmith, L., Nolan, P. M., and Fisher, E. M. (2009) An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Dis Model Mech 2, 359-373
28. Grice, S. J., Sleigh, J. N., Motley, W. W., Liu, J. L., Burgess, R. W., Talbot, K., and Cader, M. Z. (2015) Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet
29. Ray, P. S., and Fox, P. L. (2014) Origin and evolution of glutamyl-prolyl tRNA synthetase WHEP domains reveal evolutionary relationships within Holozoa. PLoS One 9, e98493
30. Francklyn, C., Perona, J. J., Puetz, J., and Hou, Y. M. (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8, 1363-1372
31. Jia, J., Arif, A., Ray, P. S., and Fox, P. L. (2008) WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell 29, 679-690
32. Huang, H. Y., Tang, H. L., Chao, H. Y., Yeh, L. S., and Wang, C. C. (2006) An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol Microbiol 60, 189-198
33. Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., and Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279, 49656-49663
34. Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46, 235-243
35. Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263, 52-57
36. Frechin, M., Senger, B., Braye, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Yeast mitochondrial Gln-tRNAGln is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 23, 1119-1130
37. Frugier, M., Moulinier, L., and Giege, R. (2000) A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J 19, 2371-2380
38. Godinic, V., Mocibob, M., Rocak, S., Ibba, M., and Weygand-Durasevic, I. (2007) Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNASer. FEBS J 274, 2788-2799
39. Chang, C. P., Tseng, Y. K., Ko, C. Y., and Wang, C. C. (2012) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res 40, 314-322
40. Lin, C. H., Lin, G., Chang, C. P., and Wang, C. C. (2010) A tryptophan-rich peptide acts as a transcription activation domain. BMC Mol Biol 11, 85
41. Liao, C. C., Lin, C. H., Chen, S. J., and Wang, C. C. (2012) Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria. Nucleic Acids Res 40, 9171-9181
42. Ladror, U. S., Egan, D. A., Snyder, S. W., Capobianco, J. O., Goldman, R. C., Dorwin, S. A., Johnson, R. W., Edalji, R., Sarthy, A. V., McGonigal, T., Walter, K. A., and Holzman, T. F. (1998) Domain structure analysis of elongation factor-3 from Saccharomyces cerevisiae by limited proteolysis and differential scanning calorimetry. Protein Sci 7, 2595-2601
43. Karanasios, E., and Simos, G. (2010) Building arks for tRNA: structure and function of the Arc1p family of non-catalytic tRNA-binding proteins. FEBS Lett 584, 3842-3849
44. Graindorge, J. S., Senger, B., Tritch, D., Simos, G., and Fasiolo, F. (2005) Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity. Biochemistry 44, 1344-1352
45. Leon-Del-Rio, A., Leclerc, D., Akerman, B., Wakamatsu, N., and Gravel, R. A. (1995) Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc Natl Acad Sci U S A 92, 4626-4630
46. Polyak, S. W., Chapman-Smith, A., Brautigan, P. J., and Wallace, J. C. (1999) Biotin protein ligase from Saccharomyces cerevisiae. The N-terminal domain is required for complete activity. J Biol Chem 274, 32847-32854
47. Tissot, G., Pepin, R., Job, D., Douce, R., and Alban, C. (1998) Purification and properties of the chloroplastic form of biotin holocarboxylase synthetase from Arabidopsis thaliana overexpressed in Escherichia coli. Eur J Biochem 258, 586-596
48. Pick, H., Kilic, S., and Fierz, B. (2014) Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Biochim Biophys Acta 1839, 644-656
49. Kuroishi, T., Rios-Avila, L., Pestinger, V., Wijeratne, S. S., and Zempleni, J. (2011) Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab 104, 537-545
50. Hasim, S., Tati, S., Madayiputhiya, N., Nandakumar, R., and Nickerson, K. W. (2013) Histone biotinylation in Candida albicans. FEMS Yeast Res 13, 529-539
51. Yao, X., Wei, D., Soden, C., Jr., Summers, M. F., and Beckett, D. (1997) Structure of the carboxy-terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Biochemistry 36, 15089-15100
52. Dassanayake, R. P., Madsen-Bouterse, S. A., Truscott, T. C., Zhuang, D., Mousel, M. R., Davis, W. C., and Schneider, D. A. (2016) Classical scrapie prions are associated with peripheral blood monocytes and T-lymphocytes from naturally infected sheep. BMC Vet Res 12, 27
53. Nada, S., Chang, P. K., and Dignam, J. D. (1993) Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori. J Biol Chem 268, 7660-7667
54. Shiba, K., Schimmel, P., Motegi, H., and Noda, T. (1994) Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 269, 30049-30055
55. Chien, C. I., Chen, Y. L., Chen, S. J., Chou, C. M., Chen, C. Y., and Wang, C. C. (2015) Vanderwaltozyma polyspora possesses two glycyl-tRNA synthetase genes: One constitutive and one inducible. Fungal Genet Biol 76, 47-56
56. Turner, R. J., Lovato, M., and Schimmel, P. (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 275, 27681-27688
57. Chang, C. P., Chang, C. Y., Lee, Y. H., Lin, Y. S., and Wang, C. C. (2015) Divergent Alanyl-tRNA Synthetase Genes of Vanderwaltozyma polyspora Descended from a Common Ancestor through Whole-Genome Duplication Followed by Asymmetric Evolution. Mol Cell Biol 35, 2242-2253
58. Jakubowski, H. (2012) Quality control in tRNA charging. Wiley Interdiscip Rev RNA 3, 295-310
59. Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. EMBO J 18, 4591-4596
60. Park, M. C., Kang, T., Jin, D., Han, J. M., Kim, S. B., Park, Y. J., Cho, K., Park, Y. W., Guo, M., He, W., Yang, X. L., Schimmel, P., and Kim, S. (2012) Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci U S A 109, E640-647
61. He, W., Bai, G., Zhou, H., Wei, N., White, N. M., Lauer, J., Liu, H., Shi, Y., Dumitru, C. D., Lettieri, K., Shubayev, V., Jordanova, A., Guergueltcheva, V., Griffin, P. R., Burgess, R. W., Pfaff, S. L., and Yang, X. L. (2015) CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature 526, 710-714
62. He, W., Zhang, H. M., Chong, Y. E., Guo, M., Marshall, A. G., and Yang, X. L. (2011) Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc Natl Acad Sci U S A 108, 12307-12312
指導教授 王健家(Chien-Chia Wang) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明