博碩士論文 972406001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.229.151.87
姓名 林宏儒( Hung-Ju Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 有機薄膜摻入量子點之研究與應用
(Study and applications of hybrid organic/ inorganic semiconductor quantum dots in thin films)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半導體量子點近年來已吸引越來越多人投入進行研究,由於特殊的光電特性,使得它們在太陽能電池、光電元件及生醫領域有許多潛在的發展。
本研究在於探討有機薄膜摻入量子點之研究,主要於PMMA有機薄膜摻入CdSe/ZnS量子點,並針對其光學特性做分析與探討,且提出相關之應用。在吸收與螢光光譜的分析中,我們得到此有機薄膜摻入量子點後有明顯的量子效應,進而我們也觀察到量子點之間的耦合現象(coupling effect)。
另一方面,由於此量子點本身有很強的螢光激發現象,因此這些螢光若能夠在空間分佈上進一步做控制將可實現許多應用。有鑑於此,我們提出雙光柵週期結構薄膜,並以奈米熱壓印的技術實現之。從表面分析結果可確認所壓印的有機混和量子點薄膜與模具之間有很好的結構再現性。從數值計算中我們也得知,此週期結構之有機薄膜摻入量子點內部所產生的螢光激發,藉由週期結構之效應,能夠從空間中的近場到遠場做所需要的調整與控制。
摘要(英) Semiconductor quantum dots have attracted a lot of attention for their potential application in many fields such as optoelectronics and biology.
In this study, we investigated the optical properties of hybrid nanocomposited thin films made of PMMA polymer containing different concentrations of core-shell CdSe/ZnS quantum dots. Both the absorption and luminescence spectra can be well explained by taking into account quantum mechanisms. From the luminescence spectral evidence of the coupling effect between quantum dots has been observed. With a pump laser emitting at 514 nm the luminescence spectrum centered at 560 nm strongly changes with time.
In addition, it is necessary to control the luminescent light spatial distribution where the application is concerned. Therefore we proposed structural films with a bi-periodic grating by nanoimprint technique using an engraved silicon mold. The characterizations of the imprinted structure show good quality. We also showed, by a numerical calculation, that the local field is resonant in the periodic structure and that the emission diagram can be controlled in the far field.
關鍵字(中) ★ 半導體量子點
★ 混和薄膜
關鍵字(英) ★ semiconductor quantum dots
★ hybrid thin films
論文目次 Contents
1. Introduction……1
2. Nanomaterial evolution and nanoimprint technique……4
2.1 Development of nanostructured materials……4
2.1.1 Nanostructures in nature……5
2.1.2 Artificially nanostructured materials: semiconductor quantum dots……7
2.1.3 New generation of semiconductor quantum dots……11

2.2 Development of nanocomposite thin films……15
2.2.1 Dielectric material contains nanocrystals……16
2.2.2 Organic polymer containing inorganic nanocrystals……17

2.3 Historic development of nanoimprint lithography……21
2.3.1 Thermal nanoimprint lithography……22
2.3.2 UV-curable nanoimprint lithography……24
2.3.3 New material developments……26
3. Experimental framework and principles……28
3.1 Experimental framework……28
3.2 Spin coating method – Hybrid thin films/ QDs……31
3.2.1 Rotational speed and time……32
3.2.2 Viscosity and concentration of the solution……33
3.3 Measurement methods……34
3.3.1 Spectrophotometer- transmission and reflection measurement……34
3.3.2 Photoluminescence measurement……34
3.3.3 Spectroscopic ellipsometry……37
3.3.4Transmission and scanning electron microscopy……38
3.3.4 (a) Transmission electron microscopy……38
3.3.4 (b) Scanning electron microscopy……40
3.3.5 Atomic force microscopy……42
4. Hybrid organic thin films/ QDs……44
4.1 PMMA thin film with CdSe/ZnS QDs……44
4.1.1 Introduction of experimental preparation and processes……47
4.1.2 Electron microscopy measurement……49

4.2 Optical properties of PMMA thin film layers with CdSe/ZnS QDs……50
4.2.1 Transmission/ reflection and absorption spectrum……50
4.2.2 Photoluminescence versus wavelengths measurement……56
4.2.3 Photoluminescence intensity versus time measurement……61

4.3 Frequency conversion of CdSe/ZnS QDs: Its application to solar cells……72
4.3.1 Using PMMA /QDs films as down-conversion frequency layer……72
4.3.2 QDs embedded in the active layer of organic solar cells……77
5. Nanostructured hybrid organic thin films/ QDs……81
5.1 Introduction of thermal nanoimprint organic layers……81
5.1.1 Heating experiment for transition temperature of organic layers……82
5.1.2 Periodic structure of imprinted pure organic layers……85
5.2 Imprinted nanostructure in hybrid organic layer with quantum dots……89
5.2.1 Fabrication process of imprinted hybrid layers via optimized heating……89
5.2.2 Periodic structure of imprinted hybrid layers……90

5.3 Optical field emission simulation for the periodic nanostructure……93
5.3.1 Plane wave light emission in the nanostructure……94
5.3.1(a) Emission light simulation in near field……94
5.3.1(b) Emission light simulation in far field……96
5.3.2 Dipole source emission light in the nanostructure……98
5.3.2(a) Emission light simulation in near field……98
5.3.2(b) Emission light simulation in far field……101
6. Conclusions and perspectives……103
Bibliography……107
參考文獻 1. F. Flory, L. Escoubas, and G. Berginc, "Optical properties of nanostructured materials: a review," Journal of Nanophotonics 5, 052502 (2011).
2. G. Morello, Optical Properties of Spherical Colloidal Nanocrystals, Fingerprints in the Optical and Transport Properties of Quantum Dots (InTech, 2012).
3. R. Krahne, G. Morello, A. Figuerola, C. George, S. Deka, and L. Manna, "Physical properties of elongated inorganic nanoparticles," Physics Reports 501, 75-221 (2011).
4. Y. Yang, Y.-Q. Li, S.-Y. Fu, and H.-M. Xiao, "Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting," The Journal of Physical Chemistry C 112, 10553-10558 (2008).
5. J. Albero, E. Martinez-Ferrero, J. Ajuria, C. Waldauf, R. Pacios, and E. Palomares, "Photo-induced electron recombination dynamics in CdSe/P3HT hybrid heterojunctions," Physical chemistry chemical physics : PCCP 11, 9644-9647 (2009).
6. R. E. Bailey, A. M. Smith, and S. Nie, "Quantum dots in biology and medicine," Physica E: Low-dimensional Systems and Nanostructures 25, 1-12 (2004).
7. J. Drbohlavova, V. Adam, R. Kizek, and J. Hubalek, "Quantum dots - characterization, preparation and usage in biological systems," International journal of molecular sciences 10, 656-673 (2009).
8. T. Tani, H. Horiuchi, M. Oda, E. Usukura, H. Sakai, A. Ohtaki, and M. Yohda, "Energy transfer in hybrid CdSe quantum dots vs. labelled molecular chaperone systems by imaging microscopy," physica status solidi (c) 6, 912-915 (2009).
9. M. Molnar, Y. Fu, P. Friberg, and Y. Chen, "Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells," Journal of nanobiotechnology 8, 2 (2010).
10. E. Stratakis, V. Zorba, M. Barberoglou, E. Spanakis, S. Rhizopoulou, P. Tzanetakis, S. Anastasiadis, and C. Fotakis, "Laser structuring of water-repellent biomimetic surfaces," SPIE Newsroom 10, 1441 (2009).
11. G. Tayeb, B. Gralak, and S. Enoch, "Structural Colors in Nature and Butterfly-Wing Modeling," Optics and Photonics News 14, 38-43 (2003).
12. T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, "Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films," Bioinspiration & biomimetics 3, 046004 (2008).
13. A. L. Ekimov, and A. A. Onushchenko, "Quantum size effect in three-dimensional microscopic semiconductor crystals," Journal of Experimental and Theoretical Physics Letters 34, 345-349 (1982).
14. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, "Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure," Physical Review Letters 60, 535-537 (1988).
15. C. B. Murray, C. Kagan, and M. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annual Review of Materials Science 30, 545-610 (2000).
16. V. K. L. Mer, "Nucleation in Phase Transitions," Industrial & Engineering Chemistry 44, 1270-1277 (1952).
17. J. Shiang, A. Kadavanich, R. Grubbs, and A. Alivisatos, "Symmetry of annealed wurtzite CdSe nanocrystals: assignment to the C3v point group," The Journal of Physical Chemistry 99, 17417-17422 (1995).
18. G. D. Scholes, "Controlling the Optical Properties of Inorganic Nanoparticles," Advanced Functional Materials 18, 1157-1172 (2008).
19. M. A. Hines, and G. D. Scholes, "Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution," Advanced Materials 15, 1844-1849 (2003).
20. A. Yoffe, "Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems," Advances in Physics 50, 1-208 (2001).
21. S. Baskoutas, and A. F. Terzis, "Size-dependent band gap of colloidal quantum dots," Journal of Applied Physics 99, 013708 (2006).
22. E. M. Boatman, G. C. Lisensky, and K. J. Nordell, "A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals," Journal of Chemical Education 82, 1697-1699 (2005).
23. P. D. Cozzoli, T. Pellegrino, and L. Manna, "Synthesis, properties and perspectives of hybrid nanocrystal structures," Chemical Society Reviews 35, 1195-1208 (2006).
24. A. M. Smith, and S. Nie, "Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering," Accounts of Chemical Research 43, 190-200 (2012).
25. M. Jones, S. S. Lo, and G. D. Scholes, "Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics," Proceedings of the National Academy of Sciences 106, 3011-3016 (2009).
26. S.-H. Wei, and A. Zunger, "Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals," Applied Physics Letters 72, 2011-2013 (1998).
27. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites," Journal of Physical Chemistry B 101, 9463-9475 (1997).
28. S. Kudera, L. Maus, M. Zanella, and W. Parak, "Core-Shell Nanocrystals," in Comprehensive Nanoscience and Technology, D. L. Andrews, G. D. Scholes, and G. P. Wiederrecht, eds. (2011), p. 271.
29. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, "Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures," Journal of the American Chemical Society 125, 11466-11467 (2003).
30. H. Zhong, T. Mirkovic, and G. D. Scholes, "Nanocrystal Synthesis," in Comprehensive Nanoscience and Technology, D. L. Andrews, G. D. Scholes, and G. P. Wiederrecht, eds. (2011), p. 153.
31. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, "Colloidal nanocrystal heterostructures with linear and branched topology," Nature 430, 190-195 (2004).
32. R. Cammarata, "Mechanical properties of nanocomposite thin films," Thin Solid Films 240, 82-87 (1994).
33. S. Chakrabarti, D. Das, D. Ganguli, and S. Chaudhuri, "Tailoring of room temperature excitonic luminescence in sol–gel zinc oxide–silica nanocomposite films," Thin Solid Films 441, 228-237 (2003).
34. H. Katz, G. Scheller, T. Putvinski, M. Schilling, W. Wilson, and C. Chidsey, "Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers," Science 254, 1485-1487 (1991).
35. Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, "Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass," Applied Physics Letters 75, 1712 (1999).
36. S. Mandal, R. Roy, and A. Pal, "Effect of particle shape distribution on the surface plasmon resonance of Ag–SiO2 nanocomposite thin films," Journal of Physics D: Applied Physics 36, 261 (2003).
37. U. Kreibig, and L. Genzel, "Optical absorption of small metallic particles," Surface Science 156, 678-700 (1985).
38. V. Musat, E. Fortunato, S. Petrescu, and A. Botelho do Rego, "ZnO/SiO2 nanocomposite thin films by sol–gel method," physica status solidi (a) 205, 2075-2079 (2008).
39. Y.-Y. Peng, T.-E. Hsieh, and C.-H. Hsu, "White-light emitting ZnO–SiO2 nanocomposite thin films prepared by the target-attached sputtering method," Nanotechnology 17, 174 (2006).
40. L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. Wong, "Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties," Applied Physics Letters 76, 2901-2903 (2000).
41. U. Schurmann, W. Hartung, H. Takele, V. Zaporojtchenko, and F. Faupel, "Controlled syntheses of Ag–polytetrafluoroethylene nanocomposite thin films by co-sputtering from two magnetron sources," Nanotechnology 16, 1078 (2005).
42. J. L. H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S. L.-C. Hsu, and T.-L. Li, "Transparent high refractive index nanocomposite thin films," Materials Letters 61, 2908-2910 (2007).
43. T. Kyprianidou-Leodidou, W. Caseri, and U. W. Suter, "Size variation of PbS particles in high-refractive-index nanocomposites," The Journal of Physical Chemistry 98, 8992-8997 (1994).
44. L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, "High refractive index films of polymer nanocomposites," Journal of Materials Research 8, 1742-1748 (1993).
45. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," Selected Topics in Quantum Electronics, IEEE Journal of 8, 310-320 (2002).
46. A. H. Yuwono, B. Liu, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, "Controlling the crystallinity and nonlinear optical properties of transparent TiO2-PMMA nanohybrids," Journal of Materials Chemistry 14, 2978 (2004).
47. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, and W.-F. Hsieh, "Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method," Chemical Physics Letters 409, 208-211 (2005).
48. Stephen Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science and Technology B 14, 4129-4133 (1996).
49. H. Lan, and Y. Ding, Nanoimprint lithography (INTECH, Croatia, 2010).
50. P. B. Fischer, and S. Y. Chou, "10 nm electron beam lithography and sub-50 nm overlay using a modified scanning electron microscope," Applied Physics Letters 62, 2989-2991 (1993).
51. Stephen Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Applied Physics Letters 67, 3114-3116 (1995).
52. K. Early, M. L. Schattenburg, and H. I. Smith, "Absence of resolution degradation in X-ray lithography for x from 4.5nm to 0.83nm," Microelectronic Engineering 11, 317-321 (1990).
53. J. D. Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, "Nanoscale Protein Patterning by Imprint Lithography," Nano letters 4, 853-857 (2004).
54. L. J. Guo, "Nanoimprint Lithography: Methods and Material Requirements," Advanced Materials 19, 495-513 (2007).
55. Y. Hirai, T. Yoshikawa, N. Takagi, and S. Yoshida, "Mechanical properties of Poly-methyl methacrylate (PMMA) for nanoimprint lithography," Journal of Photopolymer Science and Technology 16, 615-620 (2003).
56. C. Martin, L. Ressier, and J. P. Peyrade, "Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography," Physica E: Low-dimensional Systems and Nanostructures 17, 523-525 (2003).
57. J. Haisma, M. Verheijen, K. Van Den Heuvel, and J. Van Den Berg, "Mold?assisted nanolithography: A process for reliable pattern replication," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, 4124-4128 (1996).
58. M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E.-B. Kley, and G. Grutzner, "Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography," Microelectronic engineering 84, 984-988 (2007).
59. M. Bender, M. Otto, B. Hadam, B. Spangenberg, and H. Kurz, "Multiple imprinting in UV-based nanoimprint lithography: related material issues," Microelectronic engineering 61, 407-413 (2002).
60. M. Bender, A. Fuchs, U. Plachetka, and H. Kurz, "Status and prospects of UV-nanoimprint technology," Microelectronic Engineering 83, 827-830 (2006).
61. W. M. Choi, and O. O. Park, "A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold," Microelectronic Engineering 70, 131-136 (2003).
62. E. Roy, Y. Kanamori, M. Belotti, and Y. Chen, "Enhanced UV imprint ability with a tri-layer stamp configuration," Microelectronic Engineering 78-79, 689-694 (2005).
63. J. Tong, C. A. Simmons, and Y. Sun, "Precision patterning of PDMS membranes and applications," Journal of Micromechanics and Microengineering 18, 037004 (2008).
64. N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten, and H. Kurz, "Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-Nanoimprint lithography using diluted PDMS material," Microelectronic Engineering 84, 904-908 (2007).
65. B. D. Gates, "Nanofabrication with molds & stamps," Materials Today 8, 44-49 (2005).
66. S. L. Hellstrom, "Basic models of spin coating," (Submitted as coursework for Physics 210, Stanford University, 2007).
67. J. H. Burroughes, D. D. C. Bradley, A. E. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
68. A. Mihi, M. Ocana, and H. Miguez, "Oriented Colloidal?Crystal Thin Films by Spin?Coating Microspheres Dispersed in Volatile Media," Advanced Materials 18, 2244-2249 (2006).
69. J. H. Lai, "An investigation of spin coating of electron resists," Polymer Engineering and Science 19, 1117-1121 (1979).
70. B. Chen, "Investigation of the solvent?evaporation effect on spin coating of thin films," Polymer Engineering and Science 23, 399-403 (1983).
71. W. Daughton, and F. Givens, "An Investigation of the Thickness Variation of Spun?on Thin Films Commonly Associated with the Semiconductor Industry," Journal of The Electrochemical Society 129, 173-179 (1982).
72. S. Dhoble, H. Swart, and K. Park, Phosphate Phosphors for Solid-state Lighting (Springer, 2012).
73. R. S. Meltzer, and S. P. Feofilov, "Spectral hole burning in the 4f–5d transition of Ce3+ in LuPO4 and YPO4," Journal of Luminescence 102–103, 151-155 (2003).
74. G. Blasse, and B. Grabmaier, Luminescent materials (Springer-Verlag Berlin, 1994).
75. A. Forouhi, and I. Bloomer, "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics," Physical Review B 34, 7018 (1986).
76. S. Bosch, J. Ferre-Borrull, N. Leinfellner, and A. Canillas, "Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations," Surface science 453, 9-17 (2000).
77. D. B. Williams, and C. B. Carter, The Transmission Electron Microscope (Springer, 1996).
78. B. Fultz, and J. M. Howe, Transmission electron microscopy and diffractometry of materials (Springer, 2012).
79. Z. Wang, "Transmission electron microscopy of shape-controlled nanocrystals and their assemblies," The Journal of Physical Chemistry B 104, 1153-1175 (2000).
80. M. A. Hayat, Principles and techniques of scanning electron microscopy. Biological applications. Volume 1 (Van Nostrand Reinhold Company., 1974).
81. J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning electron microscopy and X-ray microanalysis (Springer, 2003).
82. G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters 56, 930 (1986).
83. N. C. Santos, and M. A. Castanho, "An overview of the biophysical applications of atomic force microscopy," Biophysical chemistry 107, 133-149 (2004).
84. K. Khulbe, and T. Matsuura, "Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review," Polymer 41, 1917-1935 (2000).
85. T. Gum?, M. Valiente, K. Khulbe, C. Palet, and T. Matsuura, "Characterization of activated composite membranes by solute transport, contact angle measurement, AFM and ESR," Journal of membrane science 212, 123-134 (2003).
86. M. Vilaseca, E. Mateo, L. Palacio, P. Pradanos, A. Hernandez, A. Paniagua, J. n. Coronas, and J. Santamar??a, "AFM characterization of the growth of MFI-type zeolite films on alumina substrates," Microporous and mesoporous materials 71, 33-37 (2004).
87. C. Iliescu, J. Jing, F. E. Tay, J. Miao, and T. Sun, "Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution," Surface and Coatings Technology 198, 314-318 (2005).
88. K. Boussu, B. Van der Bruggen, A. Volodin, J. Snauwaert, C. Van Haesendonck, and C. Vandecasteele, "Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM," Journal of colloid and interface science 286, 632-638 (2005).
89. R. Loef, A. J. Houtepen, E. Talgorn, J. Schoonman, and A. Goossens, "Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells," Nano letters 9, 856-859 (2009).
90. K. L. Knappenberger, D. B. Wong, Y. E. Romanyuk, and S. R. Leone, "Excitation wavelength dependence of fluorescence intermittency in CdSe/ZnS core/shell quantum dots," Nano letters 7, 3869-3874 (2007).
91. W. G. van Sark, P. L. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. van Lingen, C. de Mello Donega, and A. Meijerink, "Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy," The Journal of Physical Chemistry B 105, 8281-8284 (2001).
92. M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, "Organic solar cells with carbon nanotube network electrodes," Applied Physics Letters 88, 233506 (2006).
93. M. Karlik, "Lattice imaging in transmission electron microscopy," Materials Structure 8, 3 (2001).
94. D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, "Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites," Applied Physics Letters 97, 013304 (2010).
95. Z.-H. Chen, S. Hellstro?m, Z.-J. Ning, Z.-Y. Yu, and Y. Fu, "Exciton polariton contribution to the stokes shift in colloidal quantum dots," The Journal of Physical Chemistry C 115, 5286-5293 (2011).
96. M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, "Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots," Chinese Physics B 17, 1280 (2008).
97. M. Hopmeier, W. Guss, M. Deussen, E. Gobel, and R. Mahrt, "Enhanced dipole-dipole interaction in a polymer microcavity," Physical review letters 82, 4118 (1999).
98. H. Mattoussi, J. Heine, M. Kuno, J. Michel, M. Bawendi, and K. Jensen, "Evidence of photo-and electrodarkening of (CdSe) ZnS quantum dot composites," Journal of Applied Physics 87, 8526-8534 (2000).
99. N. Korsunska, M. Dybiec, L. Zhukov, S. Ostapenko, and T. Zhukov, "Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots," Semiconductor science and technology 20, 876-881 (2005).
100. Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. de Mello Donega, and A. Meijerink, "High-temperature luminescence quenching of colloidal quantum dots," ACS nano 6, 9058-9067 (2012).
101. D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, "Temperature dependence of the photoluminescence properties of colloidal CdSe∕ZnS core/shell quantum dots embedded in a polystyrene matrix," Physical Review B 71, 235409 (2005).
102. B. Richards, "Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers," Solar energy materials and solar cells 90, 2329-2337 (2006).
103. Z. Cheng, F. Su, L. Pan, M. Cao, and Z. Sun, "CdS quantum dot-embedded silica film as luminescent down-shifting layer for crystalline Si solar cells," Journal of Alloys and Compounds 494, L7-L10 (2010).
104. B. M. van der Ende, L. Aarts, and A. Meijerink, "Lanthanide ions as spectral converters for solar cells," Physical Chemistry Chemical Physics 11, 11081-11095 (2009).
105. S. V. Gaponenko, Optical properties of semiconductor nanocrystals (Cambridge university press, 1998).
106. M. S. Park, Y. Lee, and J. K. Kim, "One-step preparation of antireflection film by spin-coating of polymer/solvent/nonsolvent ternary system," Chemistry of materials 17, 3944-3950 (2005).
107. D. O. Demchenko, and L.-W. Wang, "Optical transitions and nature of Stokes shift in spherical CdS quantum dots," Physical Review B 73, 155326 (2006).
108. M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, "Observation of the" dark exciton" in CdSe quantum dots," Physical review letters 75, 3728-3731 (1995).
109. A. J. Nozik, "Multiple exciton generation in semiconductor quantum dots," Chemical Physics Letters 457, 3-11 (2008).
110. S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, "Intrinsic absorption of plasmonic structures for organic solar cells," Solar energy materials and solar cells 95, S57-S64 (2011).
111. H. Hoppe, and N. S. Sariciftci, "Organic solar cells: An overview," Journal of Materials Research 19, 1924-1945 (2004).
112. A. Tavlove, and S. C. Hagness, "Computational electrodynamics: the finite-difference time-domain method," Artech House, Norwood, MA 2062 (1995).
113. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, and G. Mathian, "Improving light absorption in organic solar cells by plasmonic contribution," Solar Energy Materials and Solar Cells 93, 1377-1382 (2009).
114. Y. A. Akimov, W. Koh, S. Sian, and S. Ren, "Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?," Applied Physics Letters 96, 073111 (2010).
115. W. W. Yu, and X. Peng, "Formation of High?Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers," Angewandte Chemie International Edition 41, 2368-2371 (2002).
116. C. Leatherdale, W.-K. Woo, F. Mikulec, and M. Bawendi, "On the absorption cross section of CdSe nanocrystal quantum dots," The Journal of Physical Chemistry B 106, 7619-7622 (2002).
117. F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. Wiersma, M. Colocci, M. Gurioli, L. Balet, C. Monat, and L. Li, "Near-field mapping of quantum dot emission from single-photonic crystal cavity modes," Physica E: Low-dimensional Systems and Nanostructures 40, 1965-1967 (2008).
118. C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Ho?fling, and A. Forchel, "Single photon emission from a site-controlled quantum dot-micropillar cavity system," Applied Physics Letters 94, 111111 (2009).
119. Guangming Wang, Zuhong Lu, Chunwei Yuan, and Y. Wei, "Influence of the surface pressure of Langmuir-Blodgett films on the efficiency of organic electroluminescence," Thin Solid Films 288, 334-336 (1996).
120. V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, "Direct patterning of quantum dot nanostructures via electron beam lithography," Journal of Materials Chemistry 21, 16859 (2011).
121. G. Wang, Z. Lu, C. Yuan, and Y. Wei, "Influence of the surface pressure of Langmuir-Blodgett films on the efficiency of organic electroluminescence," Thin solid films 288, 334-336 (1996).
122. S. Shum, and K. Luk, "An efficient FDTD near-to-far-field transformation for radiation pattern calculation," Microwave and optical technology letters 20, 129-131 (1999).
123. A. Taflove, and K. Umashankar, "Radar cross section of general three-dimensional scatterers," IEEE Transactions on Electromagnetic Compatibility EMC-25, 433-440 (1983).
124. R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering]," IEEE Transactions on Antennas and Propagation 39, 429-433 (1991).
指導教授 李正中、陳昇暉
(Cheng- Chung Lee、Sheng- Hui Chen)
審核日期 2014-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明