博碩士論文 972406002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.220.16.184
姓名 鄭智元(Chih-yuan Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 同軸式全像儲存系統記錄介質具有離焦之研究
(The study of the collinear holographic data storage system with disc defocus)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們以理論估計全像儲存系統的儲存容量,以及在限制條件下,對儲存系統的影響。以純量繞射理論以及相位疊加法為基礎,建立同軸式體積全像儲存系統的模型,並且推導出當記錄介質在紀錄以及讀取過程中,含有離焦繞射公式之近軸近似解。以此公式為基礎,分析系統之點光源擴散函數、橫向位移選擇性、縱向容忍度。接著在參考光加入不同像調製,分析相位調製對上述參數的影響,並說明為何在離焦紀錄時,點擴散函數之半寬較無離焦紀錄時為窄,以及橫向位移選擇性較無離焦紀錄時為寬。最後分析在不同情況下系統的誤碼率以及訊雜比,作為同軸全像儲存系統效能的評估標準。
摘要(英) In this thesis, we estimate the theoretical capacity of the holographic data storage system and the effects of the storage system under the restrictions. Based on the scalar diffraction theory and VOHIL model, we establish the model of the collinear holographic data storage system. Then we derive the diffraction formula with the disc defocus in the recording and reading processes under the paraxial condition. Based on this formula, we analyze the point-spread function, transverse shifting selectivity, and the longitudinal shifting tolerance with disc defocus in the storage system. We analyze above parameters with different phase modulation in the reference beam, and then we explain why the width of the point spread function with disc defocus in the recording process is narrower than that without disc defocus, and the transverse shifting selectivity with disc defocus in the recording process is wider than that without disc defocus. Finally, we simulate the diffraction pattern with different conditions and analyze the bit-error rate and the signal-to-noise ratio for assessing the collinear holographic data storage system.
關鍵字(中) ★ 同軸全像資訊儲存
★ 相位疊加法
★ 純量繞射
★ 相位調製
★ 離焦
★ 點擴散函數
★ 位移選擇性
★ 位移容忍度
★ 誤碼率
★ 訊雜比
關鍵字(英) ★ collinear holographic data storage
★ VOHIL
★ scalar diffraction
★ phase modulation
★ defocus
★ point spread function
★ shifting selectivity
★ shifting tolerance
★ bit error rate
★ signal-to-noise ratio
論文目次 摘 要 I
Abstract II
致 謝 III
目 錄 IV
圖 目 錄 VI
表 目 錄 X
第一章 緒論 1
1-1前言 1
1-2 論文大綱 7
第二章 基本理論 9
2-1 全像術簡介 10
2-2 布拉格條件 13
2-3 耦合波理論 18
2-4 波恩近似法 29
2-5 相位疊加法 33
第三章 全像儲存系統 37
3-1離軸式全像儲存系統 39
3-2 同軸式全像儲存系統 44
3-3 全像儲存系統容量估算 48
第四章 紀錄介質離焦分析 67
4-1 紀錄介質離焦時之系統理論模型 68
4-2 紀錄介質離焦時近軸近似關係式推導 70
4-3 點光源擴散函數 77
4-3-1 不同強度分布參考光之點光源擴散函數 78
4-3-2 不同相位調製分布參考光之點光源擴散函數 84
4-3-3 紀錄介質於紀錄時離焦之意義 92
4-4 系統橫向位移選擇性分析 95
4-5 系統縱向位移容忍度分析 101
4-6 系統含有奈奎斯特孔徑之分析 107
第五章 二維分布之繞射光分析 116
5-1 誤碼率以及訊雜比介紹 117
5-2 紀錄介質離焦之繞射光分析 121
5-3 系統含有奈奎斯特孔徑之繞射光分析 132
第六章 結論 143
參考文獻 146
附錄A 156
中英文名詞對照表 162
參考文獻 [1] J. W. Goodman, Introduction to Fourier Optics, 2nd eds. (McGraw-Hill, New York, 2002).
[2] H. Coufal, and G.W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, 2002.
[3] E. Hecht, Optics, 4th eds. (Addison Wesley, San Francisco, 2002).
[4] Ching-Cherng Sun, Yeh-Wei Yu, Yi-Chien Lo,Din-Ping Tsai, and Chih-Yuan Cheng, “NEAR FIELD OPTICAL DISC AND NEAR FIELD OPTICAL DISC READING APPARATUS,” US Patent, US20100284254 A1.
[5] 李正中、楊宗勳、孫文信、游漢輝、陳昇暉、欒丕綱、張正陽、歐陽盟、鄭益祥、鍾德元、陳彥宏、梁肇文、郭政煌、戴朝義、伍茂仁、陳啟昌、孫慶成,光電科技概論,五南出版社,2008年
[6] G. W. Burr, “Holographic storage,” Encyclopedia of Optical Engineering, ed., R. B. Johnson and R. G. Driggers, Marcel Dekker, New York, 2003.
[7] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
[8] Hesselink, L., Orlov, S.S., Bashaw, M.C. “Holographic data storage systems,” in Proc. of IEEE 29, 1231 – 1280 (2004).
[9] D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
[10] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
[11] Masaru Kawana, Jun-ichiro Takahashi, Satoru Yasui, and Yasuo Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404 nm,” Journal of Applied Physics 117, 053105 (2015).
[12] R. Fernández, S. Gallego, A. Márquez, J. Francés, F. J. Marínez, and A. Beléndez, “Influence of index matching on AA/PVA photopolymers for low spatial frequency recording,” Appl. Opt. 54, 3132-3140 (2015).
[13] Weidong Maoa, Qunhui Sunb, Sarfaraz Baiga, Hui Lua, and Michael R. Wanga, “Red light holographic recording and readout on an azobenzene–LC polymer hybrid composite system,” Optics Communications 355, 256-260 (2015).
[14] B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593-601 (1975).
[15] A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographicthree-dimensional disks,” Appl. Opt. 35, 2389- 2398 (1996).
[16] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[17] Shiuan Huei Lin, Ken Y. Hsu, Wei-Zheng Chen, and Wha Tzong Whang, “Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
[18] Hsu KY, Lin S, Hsiao Y, and Whang W, “Experimental characterization of phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[19] Hsiao Y, Whang W, and Lin S, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
[20] Jose Mumbru, Iouri Solomatine, Demetri Psaltis, Shiuan Huei Lin, Ken Y. Hsu, Wei-Zheng Chen, and Wha Tzong Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Optics Communications 194, 103-108 (2001).
[21] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[22] S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-Transfer-Rate High-Capacity Holographic Disk Data-Storage System,” Appl. Opt. 43, 4902-4914 (2004).
[23] H. Horimai, and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006).
[24] Hideyoshi Horimai and Jun Li, “A novel collinear optical setup for holographic data storage system,” Proc. SPIE 5380, Optical Data Storage 2004, 297-303 (2004).
[25] H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575-2579 (2005).
[26] H. Horimai, and Y. Aoki, “Holographic Versatile Disc (HVD),” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society of America, 2005), paper ThE6.
[27] H. Horimai, and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12, 90-92 (2005).
[28] Hideyoshi Horimai and Xiaodi Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 1-9 (2005).
[29] H. Horimai and X. Tank, “Read-only holographic versatile disc system using laser,” Proc. of SPIE 6252, 62520Z-1- 62520Z-5 (2006).
[30] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208-1210 (2006).
[31] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Calculation of the Pixel Spread Function with a Simple Numerical Model for the Collinear Holographic Storage System,” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series, paper PD6 (2005).
[32] T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, and K. Kuroda, “What Limits the Storage Density of the Collinear Holographic Memory,” in Optical Data Storage, OSA Technical Digest Series (CD), paper TuD1 (2007).
[33] 蔡孟芬,同軸式體積全像光碟儲存系統之研究,國立中央大學光電所碩士論文,中華民國九十五年。
[34] 謝舒菁,同軸式體積全像儲存系統之研究與改良,國立中央大學光電所碩士論文,中華民國九十六年。
[35] 鄭智元,利用相位調製改良同軸式體積全像儲存系統,國立中央大學光電科學研究所碩士論文,2008年。
[36] Sergei S. Orlov, “Volume holographic data storage,” Commun. ACM 43, 46-54 (2000).
[37] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development 44, 341 (2000).
[38] John F. Heanue, Matthew C. Bashaw, and Lambertus Hesselink, “Volume Holographic Storage and Retrieval of Digital Data,” Science Magazine 265, 749-752 (1994).
[39] G. Barbastathis and D. J. Brady, “Multidimensional Tomographic Imaging Using Volume Holography,” Proc. of IEEE 87, 2098 – 2120 (1999).
[40] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter, ” Opt. Lett. 24, 811-813 (1999).
[41] 吳啟守,光折變體積全像術之波長多工於高密度分波多工器之應用,中原大學應用物理研究所碩士論文,中華民國九十年。
[42] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive Coupler for Fault-Tolerant Coupling,” IEEE Photon. Techno. Lett. 7, 789-791 (1995).
[43] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett. 20, 1125-1127 (1995).
[44] Yih-Shyang Cheng, Zheng-Feng Chen, and Chih-Hung Chen, “Virtual-image generation in 360-degree viewable image-plane disk-type multiplex holography,” Opt. Express 21, 10301-10313 (2013).
[45] Chih-Hung Chen and Yih-Shyang Cheng, “Image design for normal viewing image-plane disk-type multiplex hologram,” Chin. Opt. Lett. 9, 120003- (2011).
[46] E. Pavel, M. Mihailescu, V.B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass–ceramics,” Optics Communications 284, 930–933 (2011).
[47] Robert K. Erf, Holographic Nondestructive Testing (Academic Press, New York and London, 1974).
[48] Zs. Márton, I. Kisapáti, Á. Török, V. Tornari, E. Bernikola, K. Melessanaki, and P. Pouli, “Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples,” NDT & E International 63, 53-59 (2014).
[49] D.A. Buralli and G.M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989).
[50] D.A. Buralli and G.M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151–2158 (1991).
[51] D.A. Buralli and G.M. Morris, “Design of two- and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38–43 (1992).
[52] D. Faklis and G.M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
[53] M.D. Missig and G.M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452–2461 (1995).
[54] C. Londono, W.T. Plummer, and P.P. Clark, “Athermalization of a single- component lens with diffractive optics,” Appl. Opt. 31, 2248–2252 (1992).
[55] M.E. Motamedi, A.P. Andrews, W.J. Gunning, and M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[56] J.R. Leger, D. Chen, and G. Mowry, “Design and performance of diffractive optics custom laser resonators,” Appl. Opt. 34, 2498–2509 (1995).
[57] A.W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik 79, 41–45 (1988).
[58] J.R. Leger and G.J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15, 288–290 (1990).
[59] F.T. Chen and H.G. Craighead, “Diffractive lens fabricated with mostly zeroth order gratings,” Opt. Lett. 21, 177–179 (1996).
[60] 孫慶成,鈦酸鋇之光折非均向繞射與應用之研究,國立中央大學光電所博士論文,中華民國八十二年。
[61] M. B. Klein, “Photorefractive properties of BaTiO3,” in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds., 195-236, (Springer-Verlag, Berlin, 1988).
[62] Jeffrey O. White, Mark Cronin‐Golomb, Baruch Fischer, and Amnon Yariv, “Coherent oscillation by self‐induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450 (1982).
[63] S.I. Stepanov and M.P. Petrov, “Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field,” Optics Communications 53, 292-295 (1985).
[64] Clara Alves, Gilles Pauliat, and Gérald Roosen, “Dynamic phase-encoding storage of 64 images in a BaTiO3 photorefractive crystal,” Opt. Lett. 19, 1894-1896 (1994).
[65] M. P. Petrov, S. L. Sochava, and S. I. Stepanov, “Double phase-conjugate mirror using a photorefractive Bi12TiO20 crystal,” Opt. Lett. 14, 284-286 (1989).
[66] D. N. Christodoulides, S. R. Singh, M. I. Carvalho, and M. Segev, “Incoherently coupled soliton pairs in biased photorefractive crystals,” Applied Physics Letters 68, 1763-1765 (1996).
[67] Nikos K. Efremidis, Suzanne Sears, Demetrios N. Christodoulides, Jason W. Fleischer, and Mordechai Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
[68] Charles Kittel, Introduction to Solid State Physics, 8th eds. (John Wiley & Sons, New York, 2005).
[69] F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[70] D. L. Staebler, et al, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182 (1975).
[71] G. W. Burr, F. H. Mok, and D. Psalts, “Angle and space multiplexed storage using the 90∘ geometry,” Opt. Commun. 117, 49-55 (1995).
[72] J. F. Heanue, M.C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[73] Demetri Psaltis, Allen Pu, Michael Levene, Kevin Curtis, and George Barbastathis, “Holographic storage using shift multiplexing,” Optics Letters 20, 782-784 (1995).
[74] A. P. Yakimovich, “Selective properties of 3-D holographic gratings using spherical wave fronts,” Optics and Spectroscopy 47, 530-535 (1979).
[75] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403-2417 (1996).
[76] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
[77] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-1473 (1992).
[78] Scott Campbell, et al., “Hybrid sparse-wavelength angle-multiplexed optical data storage system,” Opt. Lett. 19, 2161-2163 (1994).
[79] S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tnable diode-laser,” Opt. Commun. 101, 317-321 (1993).
[80] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[81] V.N. Morozov “Theory of holograms formed using coded reference beams,” Sov. J. Quantum Electronics 7, 961-965 (1977).
[82] C. Denz, et al, “Volume hologram multiplexing using a deterministic phase encoding method,” Optics Comm. 85, 171-176 (1991).
[83] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Recall of linear combinations of stored data pages based on phase-code multiplexing in volume holography,” Opt. Lett. 19, 1079-1081 (1994).
[84] C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700-5705 (1992).
[85] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[86] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[87] C. C. Sun and W. C. Su, “Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms,” Appl. Opt. 40, 1253-1260 (2001).
[88] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文, 中華民國九十年。
[89] Kevin Curtis and William L Wilson, “Phase Correlation Multiplex Holography,” US patent 5,719,691.
[90] Kevin Curtis, “Method and apparatus for a phase correlated holographic drive”, US patent 6,909,529.
[91] Kevin Curtis, et al, “High Density, High Performance Data Storage via Volume Holography: The Lucent Technologies Hardware Platform,” published in book on Holographic Data Storage by Springer-Verlag, New York, Optical Science Series.
[92] Kevin Curtis, Allen Pu, and Demetri Psaltis, “Method for Holographic Storage Using Peristrophic Multiplexing,” Optics Letters 19, 993-994 (1994).
[93] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303-1311 (1966).
[94] Robert J. Collier, Christoph B. Burckhardt, and Lawrence H. Lin, Optical Holography (Academic Press, New York and London, 1971).
[95] Jeremy Bernstein, Paul M. Fishbane, and Stephen Gasiorowicz, Modern Physics (Prentice Hall, NJ, 2000).
[96] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
[97] A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
[98] 鄧敦建,體積全像於光學元件及光儲存之研究,國立中央大學光電科學研究所博士論文,中華民國九十五年。
[99] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, “Volume Diffraction Caculations Using the k-sphere Formulation”, in Holographic data storage, 42-47 (Springer, New York, 2000).
[100] Ching-Cherng Sun, Wei-Chia Su, Bor Wang, and Yueh OuYang, “Diffraction selectivity of holograms with random phase encoding,” Optics Communications 175, 67-74 (2000).
[101] Bor Wang, Ching-Cherng Sun, Wei-Chia Su, and Arthur E. T. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788-4793 (2000).
[102] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[103] Yeh-Wei Yu, Chih-Yuan Cheng, Tun-Chien Teng, Cheng-Hsien Chen, Shiuan-Huei Lin, Bo-Rong Wu, Che-Chih Hsu, Yi-Jiun Chen, Xuan-Hao Lee, Chi-Yu Wu, and Ching-Cherng Sun, “Method of compensating for pixel migration in volume holographic optical disc (VHOD),” Opt. Express 20, 20863-20873 (2012).
[104] Yeh-Wei Yu, Chih-Yuan Chen, and Ching-Cherng Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130-1132 (2010).
[105] Yeh-Wei Yu, Tun-Chien Teng, Shu-Ching Hsieh, Chih-Yuan Cheng, and Ching-Cherng Sun, “Shifting selectivity of collinear volume holographic storage,” Optics Communications 283, Issue 20, 3895–3900 (2010).
[106] Yu Y, Cheng C, Hsieh S, Teng T, and Sun C, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48(2), 020501 (February 10, 2009). doi:10.1117/1.3080725
[107] 陳政憲,無畫素串音之體積全像光儲存碟片之研究,國立中央大學光電所碩士論文,中華民國九十四年。
[108] 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電所博士論文,中華民國九十八年。
[109] Yuan Luo, Paul J. Gelsinger, Jennifer K. Barton, George Barbastathis, and Raymond K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33, 566-568 (2008).
[110] Gregory J. Steckman, Iouri Solomatine, Gan Zhou, and Demetri Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310-1312 (1998).
[111] W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803 (1966).
[112] David J. Griffiths, Introduction to Electrodynamics, 3rd eds. (Prentice Hall, New Jersey, 1999).
[113] G. W. Burr and R. M. Shelby, “Pixel-Matched Phase-Conjugate Holographic Data Storage,” SPIE Holography Newsletter, p. 8 (1999).
[114] F. Zhao and K. Sayano, “Compact Read-Only Memory with Lensless Phase-Conjugate Holograms,” Opt. Lett. 21, 1295 (1996).
[115] Kevin Curtis and Wlliam L Wilson “Architecture and Function of InPhase’s Holographic Drive,” Asia-Pacific Data Storage Conference, Invited Talk (2006).
[116] Ken Anderson, Edeline Fotheringham, Adrian Hill, Bradley Sissom, and Kevin Curtis, “High Speed Holographic Data Storage at 500Gb/in2,” SMPTE Motion Imaging Journal, 200-203 (2006).
[117] Kevin Curtis, Lisa Dhar, Adrian Hill, William Wilson and Mark Ayres, Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, New York, 2010).
[118] K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402- 1404 (2004).
[119] Teruyoshi Nobukawa and Takanori Nomura, “Coaxial Holographic Memory with Designed Reference Pattern on the Basis of Nyquist Aperture for High Density Recording,” Japanese Journal of Applied Physics 52, 09LD09 (2013).
[120] Sang-Hyuck Lee, Sung-Yong Lim, Nakyeong Kim, No-Cheol Park, Hyunseok Yang, Kyoung-Su Park, and Young-Pil Park, “Increasing the storage density of a page-based holographic data storage system by image upscaling using the PSF of the Nyquist aperture,” Opt. Express 19, 12053-12065 (2011).
[121] Alan Hoskins, Ben Ihas, Ken Anderson, and Kevin Curtis, “Monocular Architecture” Japanese Journal of Applied Physics 47, 5912-5914 (2008).
[122] Alan Hoskins, et al, “Monocular Architecture” International Workshop on Holographic Memory, International Workshop on Holographic Memories, Penang, Malaysia (2007).
[123] Ken-ichi Shimada, et al., “High density recording using Monocular architecture for 500GB consumer system,” Optical Data Storage Conference, Florida (2009).
[124] Kevin R. Curtis, Ken E. Anderson, Friso Schlottau, Tatsuro Ide, Ken′ichi Shimada, Takeshi Shimano, and Harukazu Miyamoto, “Monocular holo- graphic data storage system architecture,” US patent 7,742,209 B2.
[125] 鄭智元、余業緯、孫慶成,同軸式全像資訊儲存系統之理論模型,科儀新知第198期,73-84頁,2014年3月。
[126] K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196-16209 (2007).
[127] J. Yang, L. M. Bernardo, and Y. -S. Bae, “Improving Holographic Data Storage by Use of an Optimized Phase Mask,” Appl. Opt. 38, 5641-5645 (1999).
[128] J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006).
[129] X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in Holographic Storage Capacity by Use of Double-Random Phase Encryption,” Appl. Opt. 40, 4721-4727 (2001).
[130] F. H. Mok, G. W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett. 21, 896-899 (1996).
[131] Sergei S. Orlov, William Phillips, Eric Bjornson, Yuzuru Takashima, Padma Sundaram, Lambertus Hesselink, Robert Okas, Darren Kwan, and Raymond Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[132] B. Gombkötő, P. Koppa, A. Sütő, and E. Lőrincz, “Computer simulation of reflective volume grating holographic data storage,” J. Opt. Soc. Am. A 24, 2075-2081 (2007).
[133] Stella Romaine Lambourdiere, Atsushi Fukumoto, Kenji Tanaka, and Kenjiro Watanabe, “Simulation of Holographic Data Storage for the Optical Collinear System,” Jpn. J. Appl. Phys. 45, 1246-1252 (2006).
[134] Akio Yamakawa, Masahiro Saito, Tamotsu Yamagami, and Kenjiro Watanabe, “New Concept of Coaxial Holographic Recording,” IWHM & D 2009 Digests, 3B-2 (2009).
[135] Jack D. Gaskill, Linear System, Fourier Transforms, and Optics (John Wiley & Sons, New York, 1978).
[136] 游漢輝,傅氏光學,滄海出版社,2006年
[137] Virendra N. Mahajan, Optical Imaging and Aberrations, Part II: Wave Diffraction Optics (SPIE Press, Washington, 2001).
[138] George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 6th eds. (Elsevier Academic Press, 2005).
指導教授 孫慶成(Ching-cherng Sun) 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明