博碩士論文 972406007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.135.249.119
姓名 陳昱達(Yu-ta Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 數位全像儲存系統中的資料通道之研究
(Research of Data Channel in Digital Holographic Data Storage Systems 研)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文介紹了數位全像儲存系統(digital holographic data storage system, DHDSS)的原理並提出了對位方法及辨識方法來改善數位全像儲存系統中的資料通道。在論文中,提出兩種對位方法並且比較其性能,一種是灰階權重法(gray level weighting method, GLWM),另一種為相似結構定位法(alignment method based on structure similarity (SSIM), AMBS)。此外,辨識方法也是透過相似結構法(SSIM)法展而成的,稱為相似結構辨識法(recognition method based on SSIM, RMBS)。文中,我們會利用三個實驗來驗證這些方法的有效性。
GLWM是我們第一個提出用來改良數位全像儲存系統的對位方法。他利用資料通道中的灰階特性來準確的找出棋盤格影像上的定位點。但是,在GLWM中的邊界識別利用二值化方法完成可能會影響定位點的位置。因此AMBS利用影像品質評價的方法–SSIM來改正了GLWM的邊界識別方法來得到更準確的定位方法。而DHDSS也因為更準確的定位,誤碼率(BER)下降了1.5dB,當資料讀出時能有較大的位移寬容值。此外,當DHDSS利用低品質的光學元件來降低系統成本時,透過定位方法依然可讓系統具有令人滿意的BER。
RMBS利用一個影像資料庫儲存用來辨識的無噪聲影像,並像AMBS一樣,利用SSIM來提升辨識方法的性能,並嘗試去取代傳統的閥值法(二值化)。可惜的是,無噪聲的影像無法像一個相對映的參考影像來明確地辨識出一個具有嚴重雜訊的目標影像並且還原其原始資料。因此,在位移實驗中,RMBS的表現還需要更進一步的改進。儘管如此,RMBS在某些位移情況下仍優於閾值。
結合AMBS及RMBS這兩種方法可以削減DHDSS的系統成本,同時確保無錯誤的發生。作者希望這兩種方法的結合會使得DHDSS成為一個成熟的商業產品。
摘要(英) This thesis introduced the principle of the digital holographic data storage system (DHDSS), and proposed the alignment method and recognition method for improving the data channel in the DHDSS. There are two alignment methods proposed and compared in this thesis, one is gray level weighting method, GLWM, and another one is alignment method based on structure similarity (SSIM), AMBS. Also, the recognition method is developed by using SSIM, called recognition method based on SSIM (RMBS). Experiments are performed on three cases that demonstrate the effectiveness of these methods.
GLWM is the first method that is proposed herein to improve the alignment in the DHDSS. It uses a gray-scale, which is a characteristic of the data channel in the DHDSS, to locate accurately the fiducial point in a checkerboard image. However, an issue associated with boundary identification affects the location of the fiducial point. AMBS corrects a fault in the boundary identification, making it a more accurate alignment method to yield the accurate fiducial points in the data pages via an image quality assessment, SSIM. Since AMBS provides accurate alignment, the DHDSS has a 1.5 dB decrease in bit error rate (BER) and a greater tolerance for shift during the data readout. Also, inexpensive optical elements can be used in the DHDSS to reduce system cost while maintaining a sufficient BER.
RMBS is like AMBS in that its performance is improved by SSIM. RMBS uses an image database to store several noise-free images that are utilized in the recognition procedure. RMBS attempts to replace the thresholding method in the data channel by the effective SSIM. Unfortunately, the performance of RMBS in retrieving data from the data pages in Shifting case should be further improving because the noise-free images in the database do not unequivocally recognize the target image with serious distortion as a corresponding reference image. Nevertheless, RMBS still outperforms the thresholding method in some shifting cases.
Combining AMBS and RMBS can cut the system costs of the DHDSS, while keeping it error-free. The authors hope that the combination of the two methods will grow DHDSS into a finished commercial product.
關鍵字(中) ★ 全像儲存系統
★ 影像品質
★ 定位
★ 辨識
關鍵字(英) ★ Holographic data storage system
★ Image quality
★ Alignment
★ recognition
論文目次 中文摘要 ................................................................ I
Abstract ............................................................... II
Acknowledgements ...................................................... III
Contents ............................................................... IV
List of Figures ........................................................ VI
List of Tables.......................................................... IX
Chapter 1. Introduction ................................................. 1
1-1 Preface ............................................................. 1
1-2 Motivation .......................................................... 3
1-3 Overview ............................................................ 4
Chapter 2. Digital holographic data storage system ...................... 6
2-1 Principles .......................................................... 6
2-1-1 Holographic recording and reconstructing .......................... 6
2-1-2 Volume hologram.................................................... 7
2-1-3 Multiplexing methods ............................................. 10
2-2 Architecture ....................................................... 12
2-2-1 Optical system ................................................... 13
2-2-2 Electronic system ................................................ 17
2-3 Bit error rate ..................................................... 18
Chapter 3. Data channel for a digital holographic data storage system .. 22
3-1 Introduction of data channel ....................................... 22
3-2 Error correcting codes ............................................. 23
3-2-1 Linear block codes ............................................... 23
3-2-2 Linear cyclic codes .............................................. 25
3-2-3 Reed-Solomon code ................................................ 26
3-2-4 Convolutional codes .............................................. 28
3-3 Interleaving ....................................................... 32
3-4 Modulation codes ................................................... 33
3-4-1 Balance code ..................................................... 33
3-4-2 Sparse code....................................................... 34
3-4-3 Low-pass code .................................................... 35
3-5 Misregistration correction ......................................... 36
3-6 Gray-scale data .................................................... 37
Chapter 4. The proposed methodologies for data channel ................. 39
4-1 Structure similarity index ......................................... 39
4-2 Effectiveness of SSIM method ....................................... 42
4-3 Alignment methods .................................................. 45
4-3-1 Gray level weighting method ...................................... 45
4-3-2 Alignment method based on structural similarity .................. 48
4-4 Recognition method based on SSIM ................................... 54
Chapter 5. Experiments, results and discussion ......................... 57
5-1 Experiment on applications of SSIM ................................. 57
5-2 Numerical result of effectiveness SSIM method ...................... 59
5-3 Cases for Alignment methods ........................................ 61
5-4 Cases for the recognition method ................................... 64
Chapter 6. Conclusions and future works ................................ 67
6-1 Conclusions ........................................................ 67
6-2 Future works ....................................................... 68
Appendix A ............................................................. 70
List of References ..................................................... 74
Personal publications .................................................. 91
參考文獻 [1] J. Gantz and D. Reinsel. (2010). The Digital Universe Decade – Are You Ready? Available: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
[2] G. Cherubini, C. Chung Choo, W. C. Messner, and S. O. R. Moheimani, "Control Methods in Data-Storage Systems," IEEE Transactions on Control Systems Technology, vol. 20, pp. 296-322, 2012.
[3] R. E. Fontana, S. R. Hetzler, and G. Decad, "Technology Roadmap Comparisons for TAPE, HDD, and NAND Flash: Implications for Data Storage Applications," IEEE Transactions on Magnetics, vol. 48, pp. 1692-1696, 2012.
[4] K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: From Theory to Practical Systems John Wiley & Sons, 2010.
[5] R. L. Comstock, "Review Modern magnetic materials in data storage," Journal of Materials Science: Materials in Electronics, vol. 13, pp. 509-523, 2002.
[6] L. D. Stevens, "The Evolution of Magnetic Storage," IBM Journal of Research and Development, vol. 25, pp. 663-676, 1981.
[7] A. R. Rahiman and P. Sumari, "Solid state disk: A new storage device for video storage server," in International Symposium on Information Technology, 2008, pp. 1-8.
[8] R. E. Fontana, G. M. Decad, and S. R. Hetzler, "The impact of areal density and millions of square inches (MSI) of produced memory on petabyte shipments of TAPE, NAND flash, and HDD storage class memories," in IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST), 2013, pp. 1-8.
[9] T. Ishii, M. Hosaka, T. Hoshizawa, M. Yamaguchi, S. Koga, and A. Tanaka, "Terabyte holographic recording with monocular architecture," in IEEE International Conference on Consumer Electronics (ICCE), 2012, pp. 427-428.
[10] D. Sarid and B. H. Schechtman, "A Roadmap for Optical Data Storage Applications," Optics and Photonics News, vol. 18, pp. 32-37, 2007.
[11] A. K. Y. Wong, "Implications of Large-Storage Mobile Phones," IEEE Potentials, vol. 30, pp. 44-46, 2011.
[12] C.-C. Sun, M.-S. Tsaur, W.-C. Su, and B. Wang, "Diffraction patterns for a transmission volume hologram under Bragg mismatch," Optical and Quantum Electronics, vol. 32, pp. 431-442, 2000.
[13] J.-J. Maleval. (2012). New Company Believes in Holographic Data Storage, Yes it Exists! Available: http://www.storagenewsletter.com/rubriques/start-ups/akonia-holographics/
[14] N. Leavitt, "Storage Challenge: Where Will All That Big Data Go?," Computer, vol. 46, pp. 22-25, 2013.
[15] W. Wilson, K. Curtis, M. Tackitt, A. Hill, A. Hale, M. Schilling, et al., "High density, high performance optical data storage via volume holography: Viability at last?," Optical and Quantum Electronics, vol. 32, pp. 393-404, 2000.
[16] F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, "From the Surface to Volume: Concepts for the Next Generation of Optical–Holographic Data-Storage Materials," Angewandte Chemie International Edition, vol. 50, pp. 4552-4573, 2011.
[17] F. Träger, Springer Handbook of Lasers and Optics: Springer New York, 2007.
[18] E. P. Boden, K. P. Chan, D. V. Dylov, E. M. Kim, P. W. Lorraine, P. J. McCloskey, et al., "Recent Progress on Micro-holographic Data," in Nonlinear Optics, 2011, p. OWA1.
[19] T.-H. Chao, H. Zhou, and G. Reyes, "Compact Holographic Data Storage System," in 2001 IEEE Symposium on Mass Storage Systems and Technologies, 2001, pp. 237-237.
[20] Y.-T. Chen, M. Ou-Yang, and C.-C. Lee, "Improvement of bit error rate and page alignment in the holographic data storage system by using the structural similarity method," Applied Optics, vol. 51, pp. 3660-3669, 2012.
[21] E. Hecht, Optics 4ed.: Addison Wesley, 2002.
[22] L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," in Proceedings of the IEEE, 2004, pp. 1231-1280.
[23] W. R. Klein, "Theoretical efficiency of Bragg devices," Proceedings of the IEEE, vol. 54, pp. 803-804, 1966.
[24] G. K. Ackermann and J. Eichler, Holography: A Practical Approach: John Wiley & Sons, 2007.
[25] P. Hariharan, Optical Holography: Principles, Techniques and Applications, 2 ed.: Cambridge University Press, 1996.
[26] W. R. Klein and B. D. Cook, "Unified Approach to Ultrasonic Light Diffraction," IEEE Transactions on Sonics and Ultrasonics, vol. 14, pp. 123-134, 1967.
[27] M. Lehmann, Holography: Technique and Practice: Pitman Pub Ltd, 1970.
[28] Z. Zhai, Y. Tu, Y. Dou, J. Xu, and G. Zhang, "Bragg-matching characterization of atomic coherence gratings in an electromagnetically induced transparency solid with a confocal scheme," Optics Communications, vol. 285, pp. 277-280, 2012.
[29] H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell System Technical Journal, vol. 48, pp. 2909-2947, 1969.
[30] J. H. Hong, D. Psaltis, D. Brady, and P. Yeh, "Diffraction efficiency of strong volume holograms," Optics Letters, vol. 15, pp. 344-346, 1990.
[31] A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and S. M. Shahriar, "Angular Directivity of Diffracted Wave in Bragg-Mismatched Readout of Volume Holographic Gratings," Optics Communications, vol. 280, pp. 311-316, 2007.
[32] Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, "Spectrally resolved multidepth fluorescence imaging," Journal of Biomedical Optics, vol. 16, pp. 096015-096015-5, 2011.
[33] Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, "Volume holographic spectral imaging," in Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2005, pp. 33-40.
[34] A. Chiou, "Anisotropic cross talk in an optical interconnection by using a self-pumped phase-conjugate mirror at the Fourier plane," Optics Letters, vol. 17, pp. 1018-1020, 1992.
[35] C.-C. Sun, M.-S. Tsaur, C. W. Li, and B. Wang, "Bragg degeneracy of diffraction in photorefractive transmission volume holograms," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications IV - Proceeding of SPIE, 1998, pp. 84-93.
[36] C.-C. Sun, M.-S. Tsaur, W.-C. Su, B. Wang, and A. E. T. Chiou, "Two-Dimensional Shifting Tolerance of a Volume-Holographic Correlator," Applied Optics, vol. 38, pp. 4316-4324, 1999.
[37] G. J. Dunning, Y. Owechko, and B. H. Soffer, "Hybrid optoelectronic neural networks using a mutually pumped phase-conjugate mirror," Optics Letters, vol. 16, pp. 928-930, 1991.
[38] T.-C. Teng, Y.-W. Yu, and C.-C. Sun, "Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs," Optics Express, vol. 14, pp. 3187-3192, 2006.
[39] Q. He, J. Wang, J. Wang, M. Woo, and G. Jin, "Dynamic speckle multiplexing scheme in volume holographic data storage and its realization," Optics Express, vol. 11, pp. 366-370, 2003.
[40] C.-C. Sun, W.-C. Su, B. Wang, and A. E. T. Chiou, "Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm," Optics Communications, vol. 191, pp. 209-224, 2001.
[41] J. Kim, S.-H. Kim, H. Yang, J. Park, and Y.-P. Park, "New multiplexing method of holographic data storage system," Microsystem Technologies, vol. 15, pp. 1753-1761, 2009.
[42] Y.-W. Yu, C.-Y. Chen, and C.-C. Sun, "Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array," Optics Letters, vol. 35, pp. 1130-1132, 2010.
[43] D. Lande, M. C. Bashaw, L. Hesselink, and J. F. Heanue, "Digital wavelength-multiplexed holographic data storage system," Optics Letters, vol. 21, pp. 1780-1782, 1996.
[44] L. Chan, S. Boothroyd, J. Chrostowski, and B. Syrett, "High bandwidth memory system using wavelength multiplexed volume holograms," in Canadian Conference on Electrical and Computer Engineering, 1993, pp. 1274-1277 vol.2.
[45] T. Kume, K. Nonaka, M. Yamamoto, and S. Yagi, "Wavelength-Multiplexed Holographic Data Storage by Use of Reflection Geometry with a Cerium-Doped Strontium Barium Niobate Single-Crystal Structure and a Tunable Laser Diode," Applied Optics, vol. 37, pp. 334-339, 1998.
[46] G. A. Rakuljic, A. Yariv, and V. Leyva, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Optics Letters, vol. 17, pp. 1471-1473, 1992.
[47] K. Curtis, C. Gu, and D. Psaltis, "Cross talk in wavelength-multiplexed holographic memories," Optics Letters, vol. 18, pp. 1001-1003, 1993.
[48] N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, "Control of Angular Intervals for Angle-Multiplexed Holographic Memory," Japanese Journal of Applied Physics, vol. 48, 2009.
[49] N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, H. Kikuchi, N. Shimidzu, et al., "Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory," Applied Optics, vol. 50, pp. 2361-2369, 2011.
[50] C.-C. Sun, Y. Ouyang, W.-C. Su, A. E. T. Chiou, and C.-Y. Hsu, "All-optical angular sensing based on holography multiplexing with spherical waves," Optical Engineering, vol. 41, pp. 2809-2813, 2002.
[51] C.-M. Lin and L. Angot, "Comparison of the angular selectivity characteristics for an off-axis holographic storage system calculated by Born approximation and coupled-wave theory," Optics Letters, vol. 33, pp. 1297-1299, 2008.
[52] G. Berger, M. Dietz, and C. Denz, "Overloaded phase-code multiplexing for volume holographic storage," Optics Letters, vol. 33, pp. 1252-1254, 2008.
[53] C. Denz, K. O. Müller, F. Visinka, and T. Tschudi, "A Demonstration Platform for Phase-Coded Multiplexing," in Holographic Data Storage. vol. 76, H. Coufal, D. Psaltis, and G. Sincerbox, Eds., 1 ed: Springer Berlin Heidelberg, 2000, pp. 419-428.
[54] C. Denz, K. O. Muller, T. Heimann, and T. Tschudi, "Volume holographic storage demonstrator based on phase-coded multiplexing," IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, pp. 832-839, 1998.
[55] C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Applied Physics B, vol. 72, pp. 307-310, 2001.
[56] C.-C. Sun, W.-C. Su, B. Wang, and Y. OuYang, "Diffraction selectivity of holograms with random phase encoding," Optics Communications, vol. 175, pp. 67-74, 2000.
[57] J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Encrypted holographic data storage based on orthogonal-phase-code multiplexing," Applied Optics, vol. 34, pp. 6012-6015, 1995.
[58] G. Berger, K.-O. Mueller, C. Denz, I. Foldvari, and A. Peter, "Digital data storage in a phase-encoded holographic memory system: data quality and security," in Advanced Optical Data Storage - Proceeding of SPIE, 2003, pp. 104-111.
[59] W.-C. Su and C.-C. Sun, "Review of Random Phase Encoding in Volume Holographic Storage," Materials vol. 5, pp. 1635-1653, 2012.
[60] G. W. Burr, F. H. Mok, and D. Psaltis, "Angle and space multiplexed holographic storage using the 90° geometry," Optics Communications, vol. 117, pp. 49-55, 1995.
[61] Y. Nagasaka, K. Okada, A. Nakamura, M. Tanaka, A. Kobayashi, T. Ueyama, et al., "Method combining focus-shift and angle multiplexing method for holographic data storage," Japanese Journal of Applied Physics, vol. 47, pp. 5904-5908, 2008.
[62] K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophicmultiplexing," Optics Letters, vol. 19, pp. 993-994, 1994.
[63] J. Li, L. Cao, H. Gu, X. Tan, Q. He, and G. Jin, "Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage," Optics Letters, vol. 37, pp. 936-938, 2012.
[64] J.-S. Jang, D.-H. Shin, and Y.-S. Park, "Holographic data storage by combined use of peristrophic, angular, and spatial multiplexing," Optical Engineering, vol. 39, pp. 2975-2981, 2000.
[65] C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, "Cross-talk-limited storage capacity of volume holographic memory," Journal of the Optical Society of America A, vol. 9, pp. 1978-1983, 1992.
[66] P. J. Van Heerden, "Theory of Optical Information Storage in Solids," Applied Optics, vol. 2, pp. 393-400, 1963.
[67] R. A. Bartolini, "Media For High-Density Optical Recording," Optical Engineering, vol. 20, pp. 203382-203382, 1981.
[68] K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, et al., "Improved performance in coaxial holographic data recording," Optics Express, vol. 15, pp. 16196-16209, 2007.
[69] Y.-W. Yu, T.-C. Teng, S.-C. Hsieh, C.-Y. Cheng, and C.-C. Sun, "Shifting selectivity of collinear volume holographic storage," Optics Communications, vol. 283, pp. 3895-3900, 2010.
[70] H. Horimai and X. Tan, "Advanced Collinear Holography," Optical Review, vol. 12, pp. 90-92, 2005.
[71] H. Horimai and X. Tan, "Collinear technology for a holographic versatile disk," Applied Optics, vol. 45, pp. 910-914, 2006.
[72] H. Horimai and X. Tan, "Holographic Information Storage System: Today and Future," Magnetics, IEEE Transactions on, vol. 43, pp. 943-947, 2007.
[73] H. Horimai, "Collinear holography," in Lasers and Electro-Optics, 2003. CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on, 2003, p. 376 Vol.1.
[74] H. Horimai, "Novel optical disc storage with polarized collinear holography," in Optical Data Storage, 2003, p. TuC1.
[75] C.-C. Sun, Y.-W. Yu, S.-C. Hsieh, T.-C. Teng, and M.-F. Tsai, "Point spread function of a collinear holographic storage system," Optics Express, vol. 15, pp. 18111-18118, 2007.
[76] S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, et al., "High-Transfer-Rate High-Capacity Holographic Disk Data-Storage System," Applied Optics, vol. 43, pp. 4902-4914, 2004.
[77] D. Casasent, "Spatial light modulators," Proceedings of the IEEE, vol. 65, pp. 143-157, 1977.
[78] B. Das, J. Joseph, and K. Singh, "Phase modulated gray-scale data pages for digital holographic data storage," Optics Communications, vol. 282, pp. 2147-2154, 2009.
[79] J.-S. Jang and D.-H. Shin, "Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage," Optics Letters, vol. 26, pp. 1797-1799, 2001.
[80] M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, et al., "Effects of multilevel phase masks on interpixel cross talk in digital holographic storage," Applied Optics, vol. 36, pp. 3107-3115, 1997.
[81] J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lõrincz, "Amplitude, Phase, and Hybrid Ternary Modulation Modes of a Twisted-Nematic Liquid-Crystal Display at ~400 nm," Applied Optics, vol. 42, pp. 3428-3434, 2003.
[82] Q. Gao and R. Kostuk, "Improvement to holographic digital data-storage systems with random and pseudorandom phase masks," Applied Optics, vol. 36, pp. 4853-4861, 1997.
[83] C. B. Burckhardt, "Use of a Random Phase Mask for the Recording of Fourier Transform Holograms of Data Masks," Applied Optics, vol. 9, pp. 695-700, 1970.
[84] X. Tan, O. Matoba, T. Shimura, and K. Kuroda, "Improvement in Holographic Storage Capacity by Use of Double-Random Phase Encryption," Applied Optics, vol. 40, pp. 4721-4727, 2001.
[85] C.-C. Sun, C.-Y. Hsu, S.-H. Ma, and W.-C. Su, "Rotation selectivity of random phase encoding in volume holograms," Optics Communications, vol. 276, pp. 62-66, 2007.
[86] B. Wang, C.-C. Sun, W.-C. Su, and A. E. T. Chiou, "Shift-Tolerance Property of an Optical Double-Random Phase-Encoding Encryption System," Applied Optics, vol. 39, pp. 4788-4793, 2000.
[87] C.-C. Sun and W.-C. Su, "Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms," Applied Optics, vol. 40, pp. 1253-1260, 2001.
[88] G. T. Sincerbox, "Holographic storage - the quest for the ideal material continues," Optical Materials, vol. 4, pp. 370-375, 1995.
[89] P. Magnan, "Detection of visible photons in CCD and CMOS: A comparative view," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 504, pp. 199-212, 2003.
[90] M. Bigas, E. Cabruja, J. Forest, and J. Salvi, "Review of CMOS image sensors," Microelectronics Journal, vol. 37, pp. 433-451, 2006.
[91] Y. Morinaka and H. Komobuchi, "8-channel parallel readout high-speed wide dynamic range CCD," in 24th International Congress on High-Speed Photography and Photonics, 2001, pp. 119-126.
[92] C.-S. Lin and B.-D. Liu, "A new successive approximation architecture for low-power low-cost CMOS A/D converter," IEEE Journal of Solid-State Circuits, vol. 38, pp. 54-62, 2003.
[93] C. Yue, X. Yang, A. J. Mierop, and A. J. P. Theuwissen, "Column-Parallel Digital Correlated Multiple Sampling for Low-Noise CMOS Image Sensors," IEEE Sensors Journal, vol. 12, pp. 793-799, 2012.
[94] S. Kawahito, S. S. T. Shirei, S. Itoh, and S. Aoyama, "Noise Reduction Effects of Column-Parallel Correlated Multiple Sampling and Source-Follower Driving Current Switching for CMOS Image Sensors," in International Image Sensor Workshop, 2009.
[95] I. Inoue, N. Tanaka, H. Yamashita, T. Yamaguchi, H. Ishiwata, and H. Ihara, "Low-leakage-current and low-operating-voltage buried photodiode for a CMOS imager," IEEE Transactions on Electron Devices, vol. 50, pp. 43-47, 2003.
[96] S. Feruglio, G.-N. Lu, P. Garda, and G. Vasilescu, "A Review of the CMOS Buried Double Junction (BDJ) Photodetector and its Applications," Sensors, vol. 8, pp. 6566-6594, 2008.
[97] S. Suh, S. Itoh, S. Aoyama, and S. Kawahito, "Column-Parallel Correlated Multiple Sampling Circuits for CMOS Image Sensors and Their Noise Reduction Effects," Sensors, vol. 10, pp. 9139-9154, 2010.
[98] M. Ayres, A. Hoskins, and K. Curtis, "Image oversampling for page-oriented optical data storage," Applied Optics, vol. 45, pp. 2459-2464, 2006.
[99] R. A. Bartolini, "Optical Recording Media Review," in Optical Storage Materials and Methods - Proceedings of SPIE, 1977, pp. 2-9.
[100] C.-C. Sun, B. Wang, and J.-Y. Chang, "Contrast-reversible Photorefractive Incoherent-to-Coherent Optical Converter Based on Anisotropic Self-Diffraction in BaTiO3," Applied Optics, vol. 37, pp. 8247-8253, 1998.
[101] H. C. Kung, H. F. Yau, H. Y. Lee, N. Kukhtarev, T. C. Chen, C. C. Sun, et al., "Double phase conjugation with orthogonally polarized beams in a BaTiO3 crystal," Optics Letters, vol. 25, pp. 1031-1033, 2000.
[102] J.-P. Liu, H.-Y. Lee, H.-F. Yau, Y.-Z. Chen, C.-C. Chang, and C. C. Sun, "One-beam recording in a LiNbO3 crystal," Optics Letters, vol. 30, pp. 305-307, 2005.
[103] C.-C. Sun, M.-W. Chang, and K. Y. Hsu, "Anisotropic strong volume hologram in BaTiO3," Optics Communications, vol. 119, pp. 597-603, 1995.
[104] W. E. Moerner and S. M. Silence, "Polymeric photorefractive materials," Chemical Reviews, vol. 94, pp. 127-155, 1994.
[105] W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, "PHOTOREFRACTIVE POLYMERS," Annual Review of Materials Science, vol. 27, pp. 585-623, 1997.
[106] H. Coufal, D. Psaltis, G. Sincerbox, and B. Kippelen, "Overview of Photorefractive Polymers for Holographic Data Storage," in Holographic Data Storage. vol. 76, 1 ed: Springer Berlin Heidelberg, 2000, pp. 159-169.
[107] M. D. Rahn, D. P. West, K. Khand, J. D. Shakos, and R. M. Shelby, "Digital holographic data storage in a high-performance photorefractive polymer composite," Applied Optics, vol. 40, pp. 3395-3401, 2001.
[108] J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, "Optimized holographic data storage: diffusion and randomization," Journal of Optics a-Pure and Applied Optics, vol. 8, pp. 236-243, 2006.
[109] B. Kippelen, P. A. Blanche, A. Schulzgen, C. Fuentes-Hernandez, G. Ramos-Ortiz, J. F. Wang, et al., "Photorefractive polymers with non-destructive readout," Advanced Functional Materials, vol. 12, pp. 615-620, 2002.
[110] L. Dhar, "High-Performance Polymer Recording Materials for Holographic Data Storage," MRS BULLETIN, vol. 31, pp. 324-328, 2006.
[111] H. Coufal, D. Psaltis, G. Sincerbox, and R. M. Shelby, "Media Requirements for Digital Holographic Data Storage," in Holographic Data Storage. vol. 76, 1 ed: Springer Berlin Heidelberg, 2000, pp. 101-111.
[112] Y. Li, W. Watanabe, K. Itoh, and X. Sun, "Holographic data storage on nonphotosensitive glass with a single femtosecond laser pulse," Applied Physics Letters, vol. 81, pp. 1952-1954, 2002.
[113] J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik - International Journal for Light and Electron Optics, vol. 112, pp. 449-463, 2001.
[114] J. Guo, M. R. Gleeson, and J. T. Sheridan, "A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage," Physics Research International vol. 2012, p. 16, 2012.
[115] S. J. Zilker, "Holographic Data Storage—The Materials Challenge," ChemPhysChem, vol. 3, pp. 333-334, 2002.
[116] C.-C. Sun, "Simplified model for diffraction analysis of volume holograms," Optical Engineering, vol. 42, pp. 1184-1185, 2003.
[117] B. M. King and M. A. Neifeld, "Sparse Modulation Coding for Increased Capacity in Volume Holographic Storage," Applied Optics, vol. 39, pp. 6681-6688, 2000.
[118] P. Delaye, J. M. C. Jonathan, G. Pauliat, and G. Roosen, "Photorefractive materials: specifications relevant to applications," Pure and Applied Optics, vol. 5, pp. 541-59, 1996.
[119] M. A. Neifeld and W.-C. Chou, "Information theoretic limits to the capacity of volume holographic optical memory," Applied Optics, vol. 36, pp. 514-517, 1997.
[120] H. Coufal, D. Psaltis, G. Sincerbox, C. Gu, P. Yeh, X. Yi, et al., "Fundamental Noise Sources in Volume Holographic Storage," in Holographic Data Storage. vol. 76, 1 ed: Springer Berlin Heidelberg, 2000, pp. 63-87.
[121] G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, "Holographic multiplexing in a photorefractive polymer," in Conference on Lasers and Electro-Optics (CLEO), 2000, p. 492.
[122] F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Optics Letters, vol. 21, pp. 896-898, 1996.
[123] G. J. Steckman, A. Pu, and D. Psaltis, "Storage Density of Shift-Multiplexed Holographic Memory," Applied Optics, vol. 40, pp. 3387-3394, 2001.
[124] B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Applied Physics Letters, vol. 68, pp. 141-143, 1996.
[125] R. L. Byer, "Diode Laser-pumped Solid-State Lasers," Science, vol. 239, pp. 742-747, 1988.
[126] S. Shinada, F. Koyama, N. Nishiyama, M. Arai, and K. Iga, "Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage," IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 365-370, 2001.
[127] Y. S. Ma, L. Gonzaga, C. W. An, and B. Liu, "Effect of Laser Heating Duration on Lubricant Depletion in Heat Assisted Magnetic Recording," IEEE Transactions on Magnetics, vol. 47, pp. 3445-3448, 2011.
[128] M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, J. Ganping, L. Bin, et al., "Integrated Heat Assisted Magnetic Recording Head: Design and Recording Demonstration," IEEE Transactions on Magnetics, vol. 44, pp. 119-124, 2008.
[129] B. Liu, Y. S. Ma, M. Shakezadeh, H. L. Seet, and S. K. Yu, "Maximum writing cycle control and disk lubricant and overcoat robustness of hybrid HAMR disk drives," in APMRC, 2012 Digest, 2012, pp. 1-2.
[130] L. Wu, "Modelling and simulation of the lubricant depletion process induced by laser heating in heat-assisted magnetic recording system," Nanotechnology, vol. 18, 2007.
[131] J.-G. Zhu and H. Li, "Understanding Signal and Noise in Heat Assisted Magnetic Recording," IEEE Transactions on Magnetics, vol. 49, pp. 765-772, 2013.
[132] W. J. Kozlovsky, A. G. Dewey, A. Juliana, J. E. Hurst, M. R. Latta, D. A. Page, et al., "Optical recording in the blue using a frequency-doubled diode laser," in Optical Data Storage - Proceedings of SPIE, 1992, pp. 410-415.
[133] T. Tojyo, T. Asano, M. Takeya, T. Hino, S. Kijima, S. Goto, et al., "GaN-based high power blue-violet laser diodes," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 3206-3210, 2001.
[134] Y. Mitsuhashi, "Optical storage: Science and technology," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 37, pp. 2079-2083, 1998.
[135] R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, et al., "Microholographic multilayer optical disk data storage," Applied Optics, vol. 44, pp. 3197-3207, 2005.
[136] M. Mansuripur and G. Sincerbox, "Principles and techniques of optical data storage," Proceedings of the IEEE, vol. 85, pp. 1780-1796, 1997.
[137] L. d’Auria, J. P. Huignard, C. Slezak, and E. Spitz, "Experimental Holographic Read-Write Memory Using 3-D Storage," Applied Optics, vol. 13, pp. 808-818, 1974.
[138] J. F. Heanue, K. Gürkan, and L. Hesselink, "Signal detection for page-access optical memories with intersymbol interference," Applied Optics, vol. 35, pp. 2431-2438, 1996.
[139] M. A. Neifeld and M. McDonald, "Technique for controlling cross-talk noise in volume holography," Optics Letters, vol. 21, pp. 1298-1300, 1996.
[140] W.-C. Chou and M. A. Neifeld, "Interleaving and Error Correction in Volume Holographic Memory Systems," Applied Optics, vol. 37, pp. 6951-6968, 1998.
[141] G. W. Burr and T. Weiss, "Compensation for pixel misregistration in volume holographic data storage," Optics Letters, vol. 26, pp. 542-544, 2001.
[142] G. W. Burr, "Holographic data storage with arbitrarily misaligned data pages," Optics Letters, vol. 27, pp. 542-544, 2002.
[143] G. W. Burr and I. Leyva, "Multiplexed phase-conjugate holographic data storage with a buffer hologram," Optics Letters, vol. 25, pp. 499-501, 2000.
[144] C. Gu, J. Hong, and G. Sornat, "Bit-error rate and statistics of complex amplitude noise in holographic data storage," Optics Letters, vol. 21, pp. 1070-1072, 1996.
[145] G. W. Burr, W.-C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, "Experimental Evaluation of User Capacity in Holographic Data-Storage Systems," Applied Optics, vol. 37, pp. 5431-5443, 1998.
[146] G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, "Noise reduction of page-oriented data storage by inverse filtering during recording," Optics Letters, vol. 23, pp. 289-291, 1998.
[147] V. Vadde and B. V. K. Vijaya Kumar, "Channel Modeling and Estimation for Intrapage Equalization in Pixel-Matched Volume Holographic Data Storage," Applied Optics, vol. 38, pp. 4374-4386, 1999.
[148] A. Pu and D. Psaltis, "High-density recording in photopolymer-based holographic three-dimensional disks," Applied Optics, vol. 35, pp. 2389-2398, 1996.
[149] M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, "Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems," Applied Optics, vol. 37, pp. 5377-5385, 1998.
[150] J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Channel codes for digital holographic data storage," Journal of the Optical Society of America A, vol. 12, pp. 2432-2439, 1995.
[151] Imre Csiszár and J. Körner, Information Theory : Coding Theorems for Discrete Memoryless Systems, 2 ed., 2011.
[152] G. David Forney Jr, "Coding and its application in space communications," IEEE Spectrum, vol. 7, pp. 47-58, 1970.
[153] C. E. Shannon, "A mathematical theory of communication," vol. 5, ed: ACM, 2001, pp. 3-55.
[154] E. T. Jaynes, "Information Theory and Statistical Mechanics," Physical Review, vol. 106, pp. 620-630, 1957.
[155] C. E. Shannon, "Communication in the Presence of Noise," Proceedings of the IRE, vol. 37, pp. 10-21, 1949.
[156] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms 1ed.: Cambridge University Press, 2003.
[157] R. J. McEliece, "The decoding of Reed-Solomon codes," Jet Propulsion Laboratory, 1988.
[158] B. Sklar, Digital Communications: Fundamentals and Applications, 2 ed., 2001.
[159] W. Xiaojun, S. Xianghui, and Z. Zhibin, "An improved RS encoding algorithm," in 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 2012, pp. 1648-1652.
[160] S. Dey, A. Nath, and S. Agarwal, "Confidential Encrypted Data Hiding and Retrieval Using QR Authentication System," in International Conference on Communication Systems and Network Technologies (CSNT), 2013, pp. 512-517.
[161] I. Reed and G. Solomon, "Polynomial Codes Over Certain Finite Fields," Journal of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300-304, 1960.
[162] D. Kreiser and S. Olonbayar, "Improvements of IEEE 802.15.4a for non-coherent energy detection receiver," in International Symposium on Signals, Systems, and Electronics (ISSSE), 2012, pp. 1-5.
[163] Reed-Solomon Codes and Their Applications: John Wiley & Sons, 1999.
[164] V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon and algebraic-geometry codes," IEEE Transactions on Information Theory, vol. 45, pp. 1757-1767, 1999.
[165] R. E. Blahut, "A Universal Reed-Solomon Decoder," IBM Journal of Research and Development, vol. 28, pp. 150-158, 1984.
[166] T. C. Chen, C. H. Wei, and S. W. Wei, "Step-by-step decoding algorithm for Reed-Solomon codes," in Proceedings of the IEEE, 2000, pp. 8-12.
[167] Irving S. Reed and X. Chen, Error-Control Coding for Data Networks: Springer US, 1999.
[168] R. T. Chien, "Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes," IEEE Transactions on Information Theory, vol. 10, pp. 357-363, 1964.
[169] A. Mahmudi, "A Modified Implementation of Chien Search for Reed-Solomon Decoder," Journal Basic Science and Technology, vol. 2, pp. 10-12, 2012.
[170] P. Shankar, "Decoding Reed-Solomon codes using Euclid’s algorithm," Resonance, vol. 12, pp. 37-51, 2007.
[171] 林銀議, 數位通訊原理: 編碼與消息理論: 五南圖書出版股份有限公司, 2005.
[172] A. Brown. (2011). Implementing Reed-Solomon. Available: https://www.cs.duke.edu/courses/spring10/cps296.3/decoding_rs.pdf
[173] A. Dholakia, Introduction to Convolutional Codes with Applications: Springer US, 1994.
[174] A. J. Viterbi, "Convolutional Codes and Their Performance in Communication Systems," IEEE Transactions on Communication Technology, vol. 19, pp. 751-772, 1971.
[175] G. David Forney Jr, "Convolutional codes II. Maximum-likelihood decoding," Information and Control, vol. 25, pp. 222-266, 1974.
[176] Sneha R. Mehta and P. D. Mishra, "Application Of Convolutional Coding In Mb-Ofdm," in International Journal of Engineering Research & Technology, 2013.
[177] C. Berrou, "The ten-year-old turbo codes are entering into service," IEEE Communications Magazine, vol. 41, pp. 110-116, 2003.
[178] G. David Forney Jr, "Convolutional codes III. Sequential decoding," Information and Control, vol. 25, pp. 267-297, 1974.
[179] D. Haccoun and M. Ferguson, "Generalized stack algorithms for decoding convolutional codes," IEEE Transactions on Information Theory, vol. 21, pp. 638-651, 1975.
[180] J. Hagenauer and P. Hoeher, "A Viterbi algorithm with soft-decision outputs and its applications," in IEEE Global Telecommunications Conference and Exhibition ’Communications Technology for the 1990s and Beyond’ (GLOBECOM), 1989, pp. 1680-1686.
[181] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)," IEEE Transactions on Information Theory, vol. 20, pp. 284-287, 1974.
[182] J. K. Wolf, "Efficient maximum likelihood decoding of linear block codes using a trellis," IEEE Transactions on Information Theory, vol. 24, pp. 76-80, 1978.
[183] Y. S. Han and P.-N. Chen, Sequential Decoding of Convolutional Codes: John Wiley & Sons, 2003.
[184] G. David Forney Jr, "The viterbi algorithm," Proceedings of the IEEE, vol. 61, pp. 268-278, 1973.
[185] J. Massey, "Variable-length codes and the Fano metric," IEEE Transactions on Information Theory, vol. 18, pp. 196-198, 1972.
[186] J. B. Anderson and S. Mohan, "Sequential Coding Algorithms: A Survey and Cost Analysis," IEEE Transactions on Communications, vol. 32, pp. 169-176, 1984.
[187] F. Jelinek, "Fast sequential decoding algorithm using a stack," IBM Journal of Research and Development, vol. 13, pp. 675-685, 1969.
[188] H. Yang and X.-D. Zhang, "A fast maximum likelihood sequence decoding method for multicarrier DS-CDMA using frequency spread coding," IEEE Transactions on Wireless Communications, vol. 3, pp. 770-780, 2004.
[189] T. Yamada, H. Harashima, and H. Miyakawa, "A new maximum likelihood decoding of high rate convolutional codes using a trellis," Electronics and Communications in Japan (Part I: Communications), vol. 66, pp. 11-16, 1983.
[190] R. L. Miller, T. K. Truong, B. Benjauthrit, and I. S. Reed, "A Reed-Solomon Decoding Program for Correcting both Errors and Erasures," 1979.
[191] B. Benjauthrit, L. Coady, and M. Trcka, "An overview of error control codes for data storage," in 6th Biennial IEEE International Nonvolatile Memory Technology Conference, 1996, pp. 120-126.
[192] H. Seunghoon, K. Minseung, Y. Byungchoon, and L. Byoungho, "Interleaving for burst errors in volume holographic memory," in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), 2001, pp. 683-684.
[193] J. Kim, J.-K. Wee, and J. Lee, "Error Correcting 4/6 Modulation Codes for Holographic Data Storage," Japanese Journal of Applied Physics, vol. 49, 2010.
[194] R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, et al., "Pixel-matched holographic data storage with megabit pages," Optics Letters, vol. 22, pp. 1509-1511, 1997.
[195] J.-H. Tarng, C.-F. Tseng, and T.-C. Chen, "Two-Dimensional Modulation Code for Holographic Data Storage Systems," in Optical Data Storage, 2007, p. MD15.
[196] H.-R. Gu, L.-C. Cao, Q.-S. He, and G.-F. Jin, "A two-dimensional constant-weight sparse modulation code for volume holographic data storage," Journal of Zhejiang University SCIENCE C, vol. 12, pp. 430-435, 2011.
[197] B. M. King, G. W. Burr, and M. A. Neifeld, "Experimental Demonstration of Gray-Scale Sparse Modulation Codes in Volume Holographic Storage," Applied Optics, vol. 42, pp. 2546-2559, 2003.
[198] T. Kume, S. Yagi, T. Imai, and M. Yamamoto, "Digital holographic memory using two-dimensional modulation code," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 40, pp. 1732-1736, 2001.
[199] J. J. Ashley and B. H. Marcus, "Two-dimensional low-pass filtering codes," IEEE Transactions on Communications, vol. 46, pp. 724-727, 1998.
[200] B. Wang and C.-C. Sun, "Enhancement of signal-to-noise ratio of a double random phase encoding encryption system," Optical Engineering, vol. 40, pp. 1502-1506, 2001.
[201] B. M. King and M. A. Neifeld, "Parallel Detection Algorithm for Page-Oriented Optical Memories," Applied Optics, vol. 37, pp. 6275-6298, 1998.
[202] B. Das, J. Joseph, and K. Singh, "Phase-image-based sparse-gray-level data pages for holographic data storage," Applied Optics, vol. 48, pp. 5240-5250, 2009.
[203] G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, "Gray-scale data pages for digital holographic data storage," Optics Letters, vol. 23, pp. 1218-1220, 1998.
[204] T. Maintz, "Digital and medical image processing," Utrecht University, 2002.
[205] Z. Wang and A. C. Bovik, "Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures," IEEE Signal Processing Magazine, vol. 26, pp. 98-117, 2009.
[206] Y. Wang, "Survey of Objective Video Quality Measurements," E. C. Hopkinton, Ed., ed, 2006.
[207] Z. Wang and A. C. Bovik, "Modern Image Quality Assessment," Synthesis Lectures on Image, Video, and Multimedia Processing, vol. 2, pp. 1-156, 2006.
[208] Y. A. Y. Al-Najjar and S. D. Chen, "Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI," International Journal of Scientific & Engineering Research, vol. 3, pp. I041-I045, 2012.
[209] A. Mittal, A. K. Moorthy, and A. C. Bovik, "No-Reference Image Quality Assessment in the Spatial Domain," IEEE Transactions on Image Processing, vol. 21, pp. 4695-4708, 2012.
[210] W. Bo, W. Zhibing, L. Yupeng, and L. Xinggang, "HVS-based structural similarity for image quality assessment," in 9th International Conference on Signal Processing, 2008, pp. 1194-1197.
[211] A. K. Moorthy and A. C. Bovik, "Perceptually significant spatial pooling techniques for image quality assessment," in Human Vision and Electronic Imaging XIV, Proceeding of SPIE, 2009, pp. 724012-724012-11.
[212] G.-H. Chen, C.-L. Yang, L.-M. Po, and S.-L. Xie, "Edge-Based Structural Similarity for Image Quality Assessment," in IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, pp. II-II.
[213] G. Ke, Z. Guangtao, Y. Xiaokang, and Z. Wenjun, "An improved full-reference image quality metric based on structure compensation," in Asia-Pacific Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012, pp. 1-6.
[214] K. Seshadrinathan and A. C. Bovik, "A Structural Similarity Metric for Video Based on Motion Models," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2007, pp. I-869-I-872.
[215] X. Zhao, M. G. Reyes, T. N. Pappas, and D. L. Neuhoff, "Structural texture similarity metrics for retrieval applications," in 15th IEEE International Conference on Image Processing, 2008, pp. 1196-1199.
[216] Y. Zheng and Z. Qin, "Objective Image Fusion Quality Evaluation Using Structural Similarity," Tsinghua Science & Technology, vol. 14, pp. 703-709, 2009.
[217] L. Bin and C. Yan, "An Image Quality Assessment Algorithm Based on Dual-scale Edge Structure Similarity," in Second International Conference on Innovative Computing, Information and Control, 2007, pp. 56-56.
[218] Z.-Y. Mai, C.-L. Yang, K.-Z. Kuang, and L.-M. Po, "A Novel Motion Estimation Method Based on Structural Similarity for H.264 Inter Prediction," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2006, pp. II-II.
[219] Digital Video Image Quality and Perceptual Coding, 2005.
[220] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004.
[221] M. Ou-Yang and Y.-T. Chen, "A Gray Level Weighting Method to Reduce Optical Aberration Effect in Holographic Data Storage System," IEEE Transactions on Magnetics, vol. 47, pp. 546-550, 2011.
[222] Y.-T. Chen, M. Ou-Yang, and C.-C. Lee, "A recognition method in holographic data storage system by using structural similarity," in Optics and Photonics for Information Processing VII, Proceeding of SPIE, 2013, pp. 88550J-88550J-8.
[223] Z. Wang and A. C. Bovik, "A universal image quality index," IEEE Signal Processing Letters, vol. 9, pp. 81-84, 2002.
[224] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey, "Complex Wavelet Structural Similarity: A New Image Similarity Index," IEEE Transactions on Image Processing, vol. 18, pp. 2385-2401, 2009.
[225] C. Gu, H. Fu, and J.-R. Lien, "Correlation patterns and cross-talk noise in volume holographic optical correlators," Journal of the Optical Society of America A, vol. 12, pp. 861-868, 1995.
[226] G. P. Nordin and P. Asthana, "Effects of cross talk on fidelity in page-oriented volume holographicoptical data storage," Optics Letters, vol. 18, pp. 1553-1555, 1993.
[227] 詹綉綾, "新型灰階編碼於全像儲存系統之研究," 碩士, 國立中央大學, 2007.
[228] S. A. Butman, L. J. Deutsch, and R. L. Miller, "Performance of concatenated codes for deep space missions," The Telecommunications and Data Acquisition Progress Report, 1981.
[229] C. Kraft, "Closed solution of the Berlekamp-Massey algorithm for fast decoding of BCH codes," in IEEE International Conference on Communications, 1990, pp. 458-462.
指導教授 歐陽盟、李正中
(Mang Ou-yang、Cheng-chung Lee)
審核日期 2013-12-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明