參考文獻 |
[1] J. Gantz and D. Reinsel. (2010). The Digital Universe Decade – Are You Ready? Available: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
[2] G. Cherubini, C. Chung Choo, W. C. Messner, and S. O. R. Moheimani, "Control Methods in Data-Storage Systems," IEEE Transactions on Control Systems Technology, vol. 20, pp. 296-322, 2012.
[3] R. E. Fontana, S. R. Hetzler, and G. Decad, "Technology Roadmap Comparisons for TAPE, HDD, and NAND Flash: Implications for Data Storage Applications," IEEE Transactions on Magnetics, vol. 48, pp. 1692-1696, 2012.
[4] K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: From Theory to Practical Systems John Wiley & Sons, 2010.
[5] R. L. Comstock, "Review Modern magnetic materials in data storage," Journal of Materials Science: Materials in Electronics, vol. 13, pp. 509-523, 2002.
[6] L. D. Stevens, "The Evolution of Magnetic Storage," IBM Journal of Research and Development, vol. 25, pp. 663-676, 1981.
[7] A. R. Rahiman and P. Sumari, "Solid state disk: A new storage device for video storage server," in International Symposium on Information Technology, 2008, pp. 1-8.
[8] R. E. Fontana, G. M. Decad, and S. R. Hetzler, "The impact of areal density and millions of square inches (MSI) of produced memory on petabyte shipments of TAPE, NAND flash, and HDD storage class memories," in IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST), 2013, pp. 1-8.
[9] T. Ishii, M. Hosaka, T. Hoshizawa, M. Yamaguchi, S. Koga, and A. Tanaka, "Terabyte holographic recording with monocular architecture," in IEEE International Conference on Consumer Electronics (ICCE), 2012, pp. 427-428.
[10] D. Sarid and B. H. Schechtman, "A Roadmap for Optical Data Storage Applications," Optics and Photonics News, vol. 18, pp. 32-37, 2007.
[11] A. K. Y. Wong, "Implications of Large-Storage Mobile Phones," IEEE Potentials, vol. 30, pp. 44-46, 2011.
[12] C.-C. Sun, M.-S. Tsaur, W.-C. Su, and B. Wang, "Diffraction patterns for a transmission volume hologram under Bragg mismatch," Optical and Quantum Electronics, vol. 32, pp. 431-442, 2000.
[13] J.-J. Maleval. (2012). New Company Believes in Holographic Data Storage, Yes it Exists! Available: http://www.storagenewsletter.com/rubriques/start-ups/akonia-holographics/
[14] N. Leavitt, "Storage Challenge: Where Will All That Big Data Go?," Computer, vol. 46, pp. 22-25, 2013.
[15] W. Wilson, K. Curtis, M. Tackitt, A. Hill, A. Hale, M. Schilling, et al., "High density, high performance optical data storage via volume holography: Viability at last?," Optical and Quantum Electronics, vol. 32, pp. 393-404, 2000.
[16] F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, "From the Surface to Volume: Concepts for the Next Generation of Optical–Holographic Data-Storage Materials," Angewandte Chemie International Edition, vol. 50, pp. 4552-4573, 2011.
[17] F. Träger, Springer Handbook of Lasers and Optics: Springer New York, 2007.
[18] E. P. Boden, K. P. Chan, D. V. Dylov, E. M. Kim, P. W. Lorraine, P. J. McCloskey, et al., "Recent Progress on Micro-holographic Data," in Nonlinear Optics, 2011, p. OWA1.
[19] T.-H. Chao, H. Zhou, and G. Reyes, "Compact Holographic Data Storage System," in 2001 IEEE Symposium on Mass Storage Systems and Technologies, 2001, pp. 237-237.
[20] Y.-T. Chen, M. Ou-Yang, and C.-C. Lee, "Improvement of bit error rate and page alignment in the holographic data storage system by using the structural similarity method," Applied Optics, vol. 51, pp. 3660-3669, 2012.
[21] E. Hecht, Optics 4ed.: Addison Wesley, 2002.
[22] L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," in Proceedings of the IEEE, 2004, pp. 1231-1280.
[23] W. R. Klein, "Theoretical efficiency of Bragg devices," Proceedings of the IEEE, vol. 54, pp. 803-804, 1966.
[24] G. K. Ackermann and J. Eichler, Holography: A Practical Approach: John Wiley & Sons, 2007.
[25] P. Hariharan, Optical Holography: Principles, Techniques and Applications, 2 ed.: Cambridge University Press, 1996.
[26] W. R. Klein and B. D. Cook, "Unified Approach to Ultrasonic Light Diffraction," IEEE Transactions on Sonics and Ultrasonics, vol. 14, pp. 123-134, 1967.
[27] M. Lehmann, Holography: Technique and Practice: Pitman Pub Ltd, 1970.
[28] Z. Zhai, Y. Tu, Y. Dou, J. Xu, and G. Zhang, "Bragg-matching characterization of atomic coherence gratings in an electromagnetically induced transparency solid with a confocal scheme," Optics Communications, vol. 285, pp. 277-280, 2012.
[29] H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell System Technical Journal, vol. 48, pp. 2909-2947, 1969.
[30] J. H. Hong, D. Psaltis, D. Brady, and P. Yeh, "Diffraction efficiency of strong volume holograms," Optics Letters, vol. 15, pp. 344-346, 1990.
[31] A. Heifetz, J. T. Shen, S. C. Tseng, G. S. Pati, J.-K. Lee, and S. M. Shahriar, "Angular Directivity of Diffracted Wave in Bragg-Mismatched Readout of Volume Holographic Gratings," Optics Communications, vol. 280, pp. 311-316, 2007.
[32] Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, "Spectrally resolved multidepth fluorescence imaging," Journal of Biomedical Optics, vol. 16, pp. 096015-096015-5, 2011.
[33] Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, "Volume holographic spectral imaging," in Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2005, pp. 33-40.
[34] A. Chiou, "Anisotropic cross talk in an optical interconnection by using a self-pumped phase-conjugate mirror at the Fourier plane," Optics Letters, vol. 17, pp. 1018-1020, 1992.
[35] C.-C. Sun, M.-S. Tsaur, C. W. Li, and B. Wang, "Bragg degeneracy of diffraction in photorefractive transmission volume holograms," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications IV - Proceeding of SPIE, 1998, pp. 84-93.
[36] C.-C. Sun, M.-S. Tsaur, W.-C. Su, B. Wang, and A. E. T. Chiou, "Two-Dimensional Shifting Tolerance of a Volume-Holographic Correlator," Applied Optics, vol. 38, pp. 4316-4324, 1999.
[37] G. J. Dunning, Y. Owechko, and B. H. Soffer, "Hybrid optoelectronic neural networks using a mutually pumped phase-conjugate mirror," Optics Letters, vol. 16, pp. 928-930, 1991.
[38] T.-C. Teng, Y.-W. Yu, and C.-C. Sun, "Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs," Optics Express, vol. 14, pp. 3187-3192, 2006.
[39] Q. He, J. Wang, J. Wang, M. Woo, and G. Jin, "Dynamic speckle multiplexing scheme in volume holographic data storage and its realization," Optics Express, vol. 11, pp. 366-370, 2003.
[40] C.-C. Sun, W.-C. Su, B. Wang, and A. E. T. Chiou, "Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm," Optics Communications, vol. 191, pp. 209-224, 2001.
[41] J. Kim, S.-H. Kim, H. Yang, J. Park, and Y.-P. Park, "New multiplexing method of holographic data storage system," Microsystem Technologies, vol. 15, pp. 1753-1761, 2009.
[42] Y.-W. Yu, C.-Y. Chen, and C.-C. Sun, "Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array," Optics Letters, vol. 35, pp. 1130-1132, 2010.
[43] D. Lande, M. C. Bashaw, L. Hesselink, and J. F. Heanue, "Digital wavelength-multiplexed holographic data storage system," Optics Letters, vol. 21, pp. 1780-1782, 1996.
[44] L. Chan, S. Boothroyd, J. Chrostowski, and B. Syrett, "High bandwidth memory system using wavelength multiplexed volume holograms," in Canadian Conference on Electrical and Computer Engineering, 1993, pp. 1274-1277 vol.2.
[45] T. Kume, K. Nonaka, M. Yamamoto, and S. Yagi, "Wavelength-Multiplexed Holographic Data Storage by Use of Reflection Geometry with a Cerium-Doped Strontium Barium Niobate Single-Crystal Structure and a Tunable Laser Diode," Applied Optics, vol. 37, pp. 334-339, 1998.
[46] G. A. Rakuljic, A. Yariv, and V. Leyva, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Optics Letters, vol. 17, pp. 1471-1473, 1992.
[47] K. Curtis, C. Gu, and D. Psaltis, "Cross talk in wavelength-multiplexed holographic memories," Optics Letters, vol. 18, pp. 1001-1003, 1993.
[48] N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, "Control of Angular Intervals for Angle-Multiplexed Holographic Memory," Japanese Journal of Applied Physics, vol. 48, 2009.
[49] N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, H. Kikuchi, N. Shimidzu, et al., "Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory," Applied Optics, vol. 50, pp. 2361-2369, 2011.
[50] C.-C. Sun, Y. Ouyang, W.-C. Su, A. E. T. Chiou, and C.-Y. Hsu, "All-optical angular sensing based on holography multiplexing with spherical waves," Optical Engineering, vol. 41, pp. 2809-2813, 2002.
[51] C.-M. Lin and L. Angot, "Comparison of the angular selectivity characteristics for an off-axis holographic storage system calculated by Born approximation and coupled-wave theory," Optics Letters, vol. 33, pp. 1297-1299, 2008.
[52] G. Berger, M. Dietz, and C. Denz, "Overloaded phase-code multiplexing for volume holographic storage," Optics Letters, vol. 33, pp. 1252-1254, 2008.
[53] C. Denz, K. O. Müller, F. Visinka, and T. Tschudi, "A Demonstration Platform for Phase-Coded Multiplexing," in Holographic Data Storage. vol. 76, H. Coufal, D. Psaltis, and G. Sincerbox, Eds., 1 ed: Springer Berlin Heidelberg, 2000, pp. 419-428.
[54] C. Denz, K. O. Muller, T. Heimann, and T. Tschudi, "Volume holographic storage demonstrator based on phase-coded multiplexing," IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, pp. 832-839, 1998.
[55] C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Applied Physics B, vol. 72, pp. 307-310, 2001.
[56] C.-C. Sun, W.-C. Su, B. Wang, and Y. OuYang, "Diffraction selectivity of holograms with random phase encoding," Optics Communications, vol. 175, pp. 67-74, 2000.
[57] J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Encrypted holographic data storage based on orthogonal-phase-code multiplexing," Applied Optics, vol. 34, pp. 6012-6015, 1995.
[58] G. Berger, K.-O. Mueller, C. Denz, I. Foldvari, and A. Peter, "Digital data storage in a phase-encoded holographic memory system: data quality and security," in Advanced Optical Data Storage - Proceeding of SPIE, 2003, pp. 104-111.
[59] W.-C. Su and C.-C. Sun, "Review of Random Phase Encoding in Volume Holographic Storage," Materials vol. 5, pp. 1635-1653, 2012.
[60] G. W. Burr, F. H. Mok, and D. Psaltis, "Angle and space multiplexed holographic storage using the 90° geometry," Optics Communications, vol. 117, pp. 49-55, 1995.
[61] Y. Nagasaka, K. Okada, A. Nakamura, M. Tanaka, A. Kobayashi, T. Ueyama, et al., "Method combining focus-shift and angle multiplexing method for holographic data storage," Japanese Journal of Applied Physics, vol. 47, pp. 5904-5908, 2008.
[62] K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophicmultiplexing," Optics Letters, vol. 19, pp. 993-994, 1994.
[63] J. Li, L. Cao, H. Gu, X. Tan, Q. He, and G. Jin, "Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage," Optics Letters, vol. 37, pp. 936-938, 2012.
[64] J.-S. Jang, D.-H. Shin, and Y.-S. Park, "Holographic data storage by combined use of peristrophic, angular, and spatial multiplexing," Optical Engineering, vol. 39, pp. 2975-2981, 2000.
[65] C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, "Cross-talk-limited storage capacity of volume holographic memory," Journal of the Optical Society of America A, vol. 9, pp. 1978-1983, 1992.
[66] P. J. Van Heerden, "Theory of Optical Information Storage in Solids," Applied Optics, vol. 2, pp. 393-400, 1963.
[67] R. A. Bartolini, "Media For High-Density Optical Recording," Optical Engineering, vol. 20, pp. 203382-203382, 1981.
[68] K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, et al., "Improved performance in coaxial holographic data recording," Optics Express, vol. 15, pp. 16196-16209, 2007.
[69] Y.-W. Yu, T.-C. Teng, S.-C. Hsieh, C.-Y. Cheng, and C.-C. Sun, "Shifting selectivity of collinear volume holographic storage," Optics Communications, vol. 283, pp. 3895-3900, 2010.
[70] H. Horimai and X. Tan, "Advanced Collinear Holography," Optical Review, vol. 12, pp. 90-92, 2005.
[71] H. Horimai and X. Tan, "Collinear technology for a holographic versatile disk," Applied Optics, vol. 45, pp. 910-914, 2006.
[72] H. Horimai and X. Tan, "Holographic Information Storage System: Today and Future," Magnetics, IEEE Transactions on, vol. 43, pp. 943-947, 2007.
[73] H. Horimai, "Collinear holography," in Lasers and Electro-Optics, 2003. CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on, 2003, p. 376 Vol.1.
[74] H. Horimai, "Novel optical disc storage with polarized collinear holography," in Optical Data Storage, 2003, p. TuC1.
[75] C.-C. Sun, Y.-W. Yu, S.-C. Hsieh, T.-C. Teng, and M.-F. Tsai, "Point spread function of a collinear holographic storage system," Optics Express, vol. 15, pp. 18111-18118, 2007.
[76] S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, et al., "High-Transfer-Rate High-Capacity Holographic Disk Data-Storage System," Applied Optics, vol. 43, pp. 4902-4914, 2004.
[77] D. Casasent, "Spatial light modulators," Proceedings of the IEEE, vol. 65, pp. 143-157, 1977.
[78] B. Das, J. Joseph, and K. Singh, "Phase modulated gray-scale data pages for digital holographic data storage," Optics Communications, vol. 282, pp. 2147-2154, 2009.
[79] J.-S. Jang and D.-H. Shin, "Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage," Optics Letters, vol. 26, pp. 1797-1799, 2001.
[80] M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, et al., "Effects of multilevel phase masks on interpixel cross talk in digital holographic storage," Applied Optics, vol. 36, pp. 3107-3115, 1997.
[81] J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lõrincz, "Amplitude, Phase, and Hybrid Ternary Modulation Modes of a Twisted-Nematic Liquid-Crystal Display at ~400 nm," Applied Optics, vol. 42, pp. 3428-3434, 2003.
[82] Q. Gao and R. Kostuk, "Improvement to holographic digital data-storage systems with random and pseudorandom phase masks," Applied Optics, vol. 36, pp. 4853-4861, 1997.
[83] C. B. Burckhardt, "Use of a Random Phase Mask for the Recording of Fourier Transform Holograms of Data Masks," Applied Optics, vol. 9, pp. 695-700, 1970.
[84] X. Tan, O. Matoba, T. Shimura, and K. Kuroda, "Improvement in Holographic Storage Capacity by Use of Double-Random Phase Encryption," Applied Optics, vol. 40, pp. 4721-4727, 2001.
[85] C.-C. Sun, C.-Y. Hsu, S.-H. Ma, and W.-C. Su, "Rotation selectivity of random phase encoding in volume holograms," Optics Communications, vol. 276, pp. 62-66, 2007.
[86] B. Wang, C.-C. Sun, W.-C. Su, and A. E. T. Chiou, "Shift-Tolerance Property of an Optical Double-Random Phase-Encoding Encryption System," Applied Optics, vol. 39, pp. 4788-4793, 2000.
[87] C.-C. Sun and W.-C. Su, "Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms," Applied Optics, vol. 40, pp. 1253-1260, 2001.
[88] G. T. Sincerbox, "Holographic storage - the quest for the ideal material continues," Optical Materials, vol. 4, pp. 370-375, 1995.
[89] P. Magnan, "Detection of visible photons in CCD and CMOS: A comparative view," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 504, pp. 199-212, 2003.
[90] M. Bigas, E. Cabruja, J. Forest, and J. Salvi, "Review of CMOS image sensors," Microelectronics Journal, vol. 37, pp. 433-451, 2006.
[91] Y. Morinaka and H. Komobuchi, "8-channel parallel readout high-speed wide dynamic range CCD," in 24th International Congress on High-Speed Photography and Photonics, 2001, pp. 119-126.
[92] C.-S. Lin and B.-D. Liu, "A new successive approximation architecture for low-power low-cost CMOS A/D converter," IEEE Journal of Solid-State Circuits, vol. 38, pp. 54-62, 2003.
[93] C. Yue, X. Yang, A. J. Mierop, and A. J. P. Theuwissen, "Column-Parallel Digital Correlated Multiple Sampling for Low-Noise CMOS Image Sensors," IEEE Sensors Journal, vol. 12, pp. 793-799, 2012.
[94] S. Kawahito, S. S. T. Shirei, S. Itoh, and S. Aoyama, "Noise Reduction Effects of Column-Parallel Correlated Multiple Sampling and Source-Follower Driving Current Switching for CMOS Image Sensors," in International Image Sensor Workshop, 2009.
[95] I. Inoue, N. Tanaka, H. Yamashita, T. Yamaguchi, H. Ishiwata, and H. Ihara, "Low-leakage-current and low-operating-voltage buried photodiode for a CMOS imager," IEEE Transactions on Electron Devices, vol. 50, pp. 43-47, 2003.
[96] S. Feruglio, G.-N. Lu, P. Garda, and G. Vasilescu, "A Review of the CMOS Buried Double Junction (BDJ) Photodetector and its Applications," Sensors, vol. 8, pp. 6566-6594, 2008.
[97] S. Suh, S. Itoh, S. Aoyama, and S. Kawahito, "Column-Parallel Correlated Multiple Sampling Circuits for CMOS Image Sensors and Their Noise Reduction Effects," Sensors, vol. 10, pp. 9139-9154, 2010.
[98] M. Ayres, A. Hoskins, and K. Curtis, "Image oversampling for page-oriented optical data storage," Applied Optics, vol. 45, pp. 2459-2464, 2006.
[99] R. A. Bartolini, "Optical Recording Media Review," in Optical Storage Materials and Methods - Proceedings of SPIE, 1977, pp. 2-9.
[100] C.-C. Sun, B. Wang, and J.-Y. Chang, "Contrast-reversible Photorefractive Incoherent-to-Coherent Optical Converter Based on Anisotropic Self-Diffraction in BaTiO3," Applied Optics, vol. 37, pp. 8247-8253, 1998.
[101] H. C. Kung, H. F. Yau, H. Y. Lee, N. Kukhtarev, T. C. Chen, C. C. Sun, et al., "Double phase conjugation with orthogonally polarized beams in a BaTiO3 crystal," Optics Letters, vol. 25, pp. 1031-1033, 2000.
[102] J.-P. Liu, H.-Y. Lee, H.-F. Yau, Y.-Z. Chen, C.-C. Chang, and C. C. Sun, "One-beam recording in a LiNbO3 crystal," Optics Letters, vol. 30, pp. 305-307, 2005.
[103] C.-C. Sun, M.-W. Chang, and K. Y. Hsu, "Anisotropic strong volume hologram in BaTiO3," Optics Communications, vol. 119, pp. 597-603, 1995.
[104] W. E. Moerner and S. M. Silence, "Polymeric photorefractive materials," Chemical Reviews, vol. 94, pp. 127-155, 1994.
[105] W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, "PHOTOREFRACTIVE POLYMERS," Annual Review of Materials Science, vol. 27, pp. 585-623, 1997.
[106] H. Coufal, D. Psaltis, G. Sincerbox, and B. Kippelen, "Overview of Photorefractive Polymers for Holographic Data Storage," in Holographic Data Storage. vol. 76, 1 ed: Springer Berlin Heidelberg, 2000, pp. 159-169.
[107] M. D. Rahn, D. P. West, K. Khand, J. D. Shakos, and R. M. Shelby, "Digital holographic data storage in a high-performance photorefractive polymer composite," Applied Optics, vol. 40, pp. 3395-3401, 2001.
[108] J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, "Optimized holographic data storage: diffusion and randomization," Journal of Optics a-Pure and Applied Optics, vol. 8, pp. 236-243, 2006.
[109] B. Kippelen, P. A. Blanche, A. Schulzgen, C. Fuentes-Hernandez, G. Ramos-Ortiz, J. F. Wang, et al., "Photorefractive polymers with non-destructive readout," Advanced Functional Materials, vol. 12, pp. 615-620, 2002.
[110] L. Dhar, "High-Performance Polymer Recording Materials for Holographic Data Storage," MRS BULLETIN, vol. 31, pp. 324-328, 2006.
[111] H. Coufal, D. Psaltis, G. Sincerbox, and R. M. Shelby, "Media Requirements for Digital Holographic Data Storage," in Holographic Data Storage. vol. 76, 1 ed: Springer Berlin Heidelberg, 2000, pp. 101-111.
[112] Y. Li, W. Watanabe, K. Itoh, and X. Sun, "Holographic data storage on nonphotosensitive glass with a single femtosecond laser pulse," Applied Physics Letters, vol. 81, pp. 1952-1954, 2002.
[113] J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik - International Journal for Light and Electron Optics, vol. 112, pp. 449-463, 2001.
[114] J. Guo, M. R. Gleeson, and J. T. Sheridan, "A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage," Physics Research International vol. 2012, p. 16, 2012.
[115] S. J. Zilker, "Holographic Data Storage—The Materials Challenge," ChemPhysChem, vol. 3, pp. 333-334, 2002.
[116] C.-C. Sun, "Simplified model for diffraction analysis of volume holograms," Optical Engineering, vol. 42, pp. 1184-1185, 2003.
[117] B. M. King and M. A. Neifeld, "Sparse Modulation Coding for Increased Capacity in Volume Holographic Storage," Applied Optics, vol. 39, pp. 6681-6688, 2000.
[118] P. Delaye, J. M. C. Jonathan, G. Pauliat, and G. Roosen, "Photorefractive materials: specifications relevant to applications," Pure and Applied Optics, vol. 5, pp. 541-59, 1996.
[119] M. A. Neifeld and W.-C. Chou, "Information theoretic limits to the capacity of volume holographic optical memory," Applied Optics, vol. 36, pp. 514-517, 1997.
[120] H. Coufal, D. Psaltis, G. Sincerbox, C. Gu, P. Yeh, X. Yi, et al., "Fundamental Noise Sources in Volume Holographic Storage," in Holographic Data Storage. vol. 76, 1 ed: Springer Berlin Heidelberg, 2000, pp. 63-87.
[121] G. J. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, "Holographic multiplexing in a photorefractive polymer," in Conference on Lasers and Electro-Optics (CLEO), 2000, p. 492.
[122] F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Optics Letters, vol. 21, pp. 896-898, 1996.
[123] G. J. Steckman, A. Pu, and D. Psaltis, "Storage Density of Shift-Multiplexed Holographic Memory," Applied Optics, vol. 40, pp. 3387-3394, 2001.
[124] B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Applied Physics Letters, vol. 68, pp. 141-143, 1996.
[125] R. L. Byer, "Diode Laser-pumped Solid-State Lasers," Science, vol. 239, pp. 742-747, 1988.
[126] S. Shinada, F. Koyama, N. Nishiyama, M. Arai, and K. Iga, "Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage," IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 365-370, 2001.
[127] Y. S. Ma, L. Gonzaga, C. W. An, and B. Liu, "Effect of Laser Heating Duration on Lubricant Depletion in Heat Assisted Magnetic Recording," IEEE Transactions on Magnetics, vol. 47, pp. 3445-3448, 2011.
[128] M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, J. Ganping, L. Bin, et al., "Integrated Heat Assisted Magnetic Recording Head: Design and Recording Demonstration," IEEE Transactions on Magnetics, vol. 44, pp. 119-124, 2008.
[129] B. Liu, Y. S. Ma, M. Shakezadeh, H. L. Seet, and S. K. Yu, "Maximum writing cycle control and disk lubricant and overcoat robustness of hybrid HAMR disk drives," in APMRC, 2012 Digest, 2012, pp. 1-2.
[130] L. Wu, "Modelling and simulation of the lubricant depletion process induced by laser heating in heat-assisted magnetic recording system," Nanotechnology, vol. 18, 2007.
[131] J.-G. Zhu and H. Li, "Understanding Signal and Noise in Heat Assisted Magnetic Recording," IEEE Transactions on Magnetics, vol. 49, pp. 765-772, 2013.
[132] W. J. Kozlovsky, A. G. Dewey, A. Juliana, J. E. Hurst, M. R. Latta, D. A. Page, et al., "Optical recording in the blue using a frequency-doubled diode laser," in Optical Data Storage - Proceedings of SPIE, 1992, pp. 410-415.
[133] T. Tojyo, T. Asano, M. Takeya, T. Hino, S. Kijima, S. Goto, et al., "GaN-based high power blue-violet laser diodes," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 3206-3210, 2001.
[134] Y. Mitsuhashi, "Optical storage: Science and technology," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 37, pp. 2079-2083, 1998.
[135] R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, et al., "Microholographic multilayer optical disk data storage," Applied Optics, vol. 44, pp. 3197-3207, 2005.
[136] M. Mansuripur and G. Sincerbox, "Principles and techniques of optical data storage," Proceedings of the IEEE, vol. 85, pp. 1780-1796, 1997.
[137] L. d’Auria, J. P. Huignard, C. Slezak, and E. Spitz, "Experimental Holographic Read-Write Memory Using 3-D Storage," Applied Optics, vol. 13, pp. 808-818, 1974.
[138] J. F. Heanue, K. Gürkan, and L. Hesselink, "Signal detection for page-access optical memories with intersymbol interference," Applied Optics, vol. 35, pp. 2431-2438, 1996.
[139] M. A. Neifeld and M. McDonald, "Technique for controlling cross-talk noise in volume holography," Optics Letters, vol. 21, pp. 1298-1300, 1996.
[140] W.-C. Chou and M. A. Neifeld, "Interleaving and Error Correction in Volume Holographic Memory Systems," Applied Optics, vol. 37, pp. 6951-6968, 1998.
[141] G. W. Burr and T. Weiss, "Compensation for pixel misregistration in volume holographic data storage," Optics Letters, vol. 26, pp. 542-544, 2001.
[142] G. W. Burr, "Holographic data storage with arbitrarily misaligned data pages," Optics Letters, vol. 27, pp. 542-544, 2002.
[143] G. W. Burr and I. Leyva, "Multiplexed phase-conjugate holographic data storage with a buffer hologram," Optics Letters, vol. 25, pp. 499-501, 2000.
[144] C. Gu, J. Hong, and G. Sornat, "Bit-error rate and statistics of complex amplitude noise in holographic data storage," Optics Letters, vol. 21, pp. 1070-1072, 1996.
[145] G. W. Burr, W.-C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, "Experimental Evaluation of User Capacity in Holographic Data-Storage Systems," Applied Optics, vol. 37, pp. 5431-5443, 1998.
[146] G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, "Noise reduction of page-oriented data storage by inverse filtering during recording," Optics Letters, vol. 23, pp. 289-291, 1998.
[147] V. Vadde and B. V. K. Vijaya Kumar, "Channel Modeling and Estimation for Intrapage Equalization in Pixel-Matched Volume Holographic Data Storage," Applied Optics, vol. 38, pp. 4374-4386, 1999.
[148] A. Pu and D. Psaltis, "High-density recording in photopolymer-based holographic three-dimensional disks," Applied Optics, vol. 35, pp. 2389-2398, 1996.
[149] M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, "Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems," Applied Optics, vol. 37, pp. 5377-5385, 1998.
[150] J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Channel codes for digital holographic data storage," Journal of the Optical Society of America A, vol. 12, pp. 2432-2439, 1995.
[151] Imre Csiszár and J. Körner, Information Theory : Coding Theorems for Discrete Memoryless Systems, 2 ed., 2011.
[152] G. David Forney Jr, "Coding and its application in space communications," IEEE Spectrum, vol. 7, pp. 47-58, 1970.
[153] C. E. Shannon, "A mathematical theory of communication," vol. 5, ed: ACM, 2001, pp. 3-55.
[154] E. T. Jaynes, "Information Theory and Statistical Mechanics," Physical Review, vol. 106, pp. 620-630, 1957.
[155] C. E. Shannon, "Communication in the Presence of Noise," Proceedings of the IRE, vol. 37, pp. 10-21, 1949.
[156] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms 1ed.: Cambridge University Press, 2003.
[157] R. J. McEliece, "The decoding of Reed-Solomon codes," Jet Propulsion Laboratory, 1988.
[158] B. Sklar, Digital Communications: Fundamentals and Applications, 2 ed., 2001.
[159] W. Xiaojun, S. Xianghui, and Z. Zhibin, "An improved RS encoding algorithm," in 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 2012, pp. 1648-1652.
[160] S. Dey, A. Nath, and S. Agarwal, "Confidential Encrypted Data Hiding and Retrieval Using QR Authentication System," in International Conference on Communication Systems and Network Technologies (CSNT), 2013, pp. 512-517.
[161] I. Reed and G. Solomon, "Polynomial Codes Over Certain Finite Fields," Journal of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300-304, 1960.
[162] D. Kreiser and S. Olonbayar, "Improvements of IEEE 802.15.4a for non-coherent energy detection receiver," in International Symposium on Signals, Systems, and Electronics (ISSSE), 2012, pp. 1-5.
[163] Reed-Solomon Codes and Their Applications: John Wiley & Sons, 1999.
[164] V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon and algebraic-geometry codes," IEEE Transactions on Information Theory, vol. 45, pp. 1757-1767, 1999.
[165] R. E. Blahut, "A Universal Reed-Solomon Decoder," IBM Journal of Research and Development, vol. 28, pp. 150-158, 1984.
[166] T. C. Chen, C. H. Wei, and S. W. Wei, "Step-by-step decoding algorithm for Reed-Solomon codes," in Proceedings of the IEEE, 2000, pp. 8-12.
[167] Irving S. Reed and X. Chen, Error-Control Coding for Data Networks: Springer US, 1999.
[168] R. T. Chien, "Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes," IEEE Transactions on Information Theory, vol. 10, pp. 357-363, 1964.
[169] A. Mahmudi, "A Modified Implementation of Chien Search for Reed-Solomon Decoder," Journal Basic Science and Technology, vol. 2, pp. 10-12, 2012.
[170] P. Shankar, "Decoding Reed-Solomon codes using Euclid’s algorithm," Resonance, vol. 12, pp. 37-51, 2007.
[171] 林銀議, 數位通訊原理: 編碼與消息理論: 五南圖書出版股份有限公司, 2005.
[172] A. Brown. (2011). Implementing Reed-Solomon. Available: https://www.cs.duke.edu/courses/spring10/cps296.3/decoding_rs.pdf
[173] A. Dholakia, Introduction to Convolutional Codes with Applications: Springer US, 1994.
[174] A. J. Viterbi, "Convolutional Codes and Their Performance in Communication Systems," IEEE Transactions on Communication Technology, vol. 19, pp. 751-772, 1971.
[175] G. David Forney Jr, "Convolutional codes II. Maximum-likelihood decoding," Information and Control, vol. 25, pp. 222-266, 1974.
[176] Sneha R. Mehta and P. D. Mishra, "Application Of Convolutional Coding In Mb-Ofdm," in International Journal of Engineering Research & Technology, 2013.
[177] C. Berrou, "The ten-year-old turbo codes are entering into service," IEEE Communications Magazine, vol. 41, pp. 110-116, 2003.
[178] G. David Forney Jr, "Convolutional codes III. Sequential decoding," Information and Control, vol. 25, pp. 267-297, 1974.
[179] D. Haccoun and M. Ferguson, "Generalized stack algorithms for decoding convolutional codes," IEEE Transactions on Information Theory, vol. 21, pp. 638-651, 1975.
[180] J. Hagenauer and P. Hoeher, "A Viterbi algorithm with soft-decision outputs and its applications," in IEEE Global Telecommunications Conference and Exhibition ’Communications Technology for the 1990s and Beyond’ (GLOBECOM), 1989, pp. 1680-1686.
[181] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)," IEEE Transactions on Information Theory, vol. 20, pp. 284-287, 1974.
[182] J. K. Wolf, "Efficient maximum likelihood decoding of linear block codes using a trellis," IEEE Transactions on Information Theory, vol. 24, pp. 76-80, 1978.
[183] Y. S. Han and P.-N. Chen, Sequential Decoding of Convolutional Codes: John Wiley & Sons, 2003.
[184] G. David Forney Jr, "The viterbi algorithm," Proceedings of the IEEE, vol. 61, pp. 268-278, 1973.
[185] J. Massey, "Variable-length codes and the Fano metric," IEEE Transactions on Information Theory, vol. 18, pp. 196-198, 1972.
[186] J. B. Anderson and S. Mohan, "Sequential Coding Algorithms: A Survey and Cost Analysis," IEEE Transactions on Communications, vol. 32, pp. 169-176, 1984.
[187] F. Jelinek, "Fast sequential decoding algorithm using a stack," IBM Journal of Research and Development, vol. 13, pp. 675-685, 1969.
[188] H. Yang and X.-D. Zhang, "A fast maximum likelihood sequence decoding method for multicarrier DS-CDMA using frequency spread coding," IEEE Transactions on Wireless Communications, vol. 3, pp. 770-780, 2004.
[189] T. Yamada, H. Harashima, and H. Miyakawa, "A new maximum likelihood decoding of high rate convolutional codes using a trellis," Electronics and Communications in Japan (Part I: Communications), vol. 66, pp. 11-16, 1983.
[190] R. L. Miller, T. K. Truong, B. Benjauthrit, and I. S. Reed, "A Reed-Solomon Decoding Program for Correcting both Errors and Erasures," 1979.
[191] B. Benjauthrit, L. Coady, and M. Trcka, "An overview of error control codes for data storage," in 6th Biennial IEEE International Nonvolatile Memory Technology Conference, 1996, pp. 120-126.
[192] H. Seunghoon, K. Minseung, Y. Byungchoon, and L. Byoungho, "Interleaving for burst errors in volume holographic memory," in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), 2001, pp. 683-684.
[193] J. Kim, J.-K. Wee, and J. Lee, "Error Correcting 4/6 Modulation Codes for Holographic Data Storage," Japanese Journal of Applied Physics, vol. 49, 2010.
[194] R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, et al., "Pixel-matched holographic data storage with megabit pages," Optics Letters, vol. 22, pp. 1509-1511, 1997.
[195] J.-H. Tarng, C.-F. Tseng, and T.-C. Chen, "Two-Dimensional Modulation Code for Holographic Data Storage Systems," in Optical Data Storage, 2007, p. MD15.
[196] H.-R. Gu, L.-C. Cao, Q.-S. He, and G.-F. Jin, "A two-dimensional constant-weight sparse modulation code for volume holographic data storage," Journal of Zhejiang University SCIENCE C, vol. 12, pp. 430-435, 2011.
[197] B. M. King, G. W. Burr, and M. A. Neifeld, "Experimental Demonstration of Gray-Scale Sparse Modulation Codes in Volume Holographic Storage," Applied Optics, vol. 42, pp. 2546-2559, 2003.
[198] T. Kume, S. Yagi, T. Imai, and M. Yamamoto, "Digital holographic memory using two-dimensional modulation code," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 40, pp. 1732-1736, 2001.
[199] J. J. Ashley and B. H. Marcus, "Two-dimensional low-pass filtering codes," IEEE Transactions on Communications, vol. 46, pp. 724-727, 1998.
[200] B. Wang and C.-C. Sun, "Enhancement of signal-to-noise ratio of a double random phase encoding encryption system," Optical Engineering, vol. 40, pp. 1502-1506, 2001.
[201] B. M. King and M. A. Neifeld, "Parallel Detection Algorithm for Page-Oriented Optical Memories," Applied Optics, vol. 37, pp. 6275-6298, 1998.
[202] B. Das, J. Joseph, and K. Singh, "Phase-image-based sparse-gray-level data pages for holographic data storage," Applied Optics, vol. 48, pp. 5240-5250, 2009.
[203] G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, "Gray-scale data pages for digital holographic data storage," Optics Letters, vol. 23, pp. 1218-1220, 1998.
[204] T. Maintz, "Digital and medical image processing," Utrecht University, 2002.
[205] Z. Wang and A. C. Bovik, "Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures," IEEE Signal Processing Magazine, vol. 26, pp. 98-117, 2009.
[206] Y. Wang, "Survey of Objective Video Quality Measurements," E. C. Hopkinton, Ed., ed, 2006.
[207] Z. Wang and A. C. Bovik, "Modern Image Quality Assessment," Synthesis Lectures on Image, Video, and Multimedia Processing, vol. 2, pp. 1-156, 2006.
[208] Y. A. Y. Al-Najjar and S. D. Chen, "Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI," International Journal of Scientific & Engineering Research, vol. 3, pp. I041-I045, 2012.
[209] A. Mittal, A. K. Moorthy, and A. C. Bovik, "No-Reference Image Quality Assessment in the Spatial Domain," IEEE Transactions on Image Processing, vol. 21, pp. 4695-4708, 2012.
[210] W. Bo, W. Zhibing, L. Yupeng, and L. Xinggang, "HVS-based structural similarity for image quality assessment," in 9th International Conference on Signal Processing, 2008, pp. 1194-1197.
[211] A. K. Moorthy and A. C. Bovik, "Perceptually significant spatial pooling techniques for image quality assessment," in Human Vision and Electronic Imaging XIV, Proceeding of SPIE, 2009, pp. 724012-724012-11.
[212] G.-H. Chen, C.-L. Yang, L.-M. Po, and S.-L. Xie, "Edge-Based Structural Similarity for Image Quality Assessment," in IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, pp. II-II.
[213] G. Ke, Z. Guangtao, Y. Xiaokang, and Z. Wenjun, "An improved full-reference image quality metric based on structure compensation," in Asia-Pacific Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012, pp. 1-6.
[214] K. Seshadrinathan and A. C. Bovik, "A Structural Similarity Metric for Video Based on Motion Models," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2007, pp. I-869-I-872.
[215] X. Zhao, M. G. Reyes, T. N. Pappas, and D. L. Neuhoff, "Structural texture similarity metrics for retrieval applications," in 15th IEEE International Conference on Image Processing, 2008, pp. 1196-1199.
[216] Y. Zheng and Z. Qin, "Objective Image Fusion Quality Evaluation Using Structural Similarity," Tsinghua Science & Technology, vol. 14, pp. 703-709, 2009.
[217] L. Bin and C. Yan, "An Image Quality Assessment Algorithm Based on Dual-scale Edge Structure Similarity," in Second International Conference on Innovative Computing, Information and Control, 2007, pp. 56-56.
[218] Z.-Y. Mai, C.-L. Yang, K.-Z. Kuang, and L.-M. Po, "A Novel Motion Estimation Method Based on Structural Similarity for H.264 Inter Prediction," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2006, pp. II-II.
[219] Digital Video Image Quality and Perceptual Coding, 2005.
[220] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004.
[221] M. Ou-Yang and Y.-T. Chen, "A Gray Level Weighting Method to Reduce Optical Aberration Effect in Holographic Data Storage System," IEEE Transactions on Magnetics, vol. 47, pp. 546-550, 2011.
[222] Y.-T. Chen, M. Ou-Yang, and C.-C. Lee, "A recognition method in holographic data storage system by using structural similarity," in Optics and Photonics for Information Processing VII, Proceeding of SPIE, 2013, pp. 88550J-88550J-8.
[223] Z. Wang and A. C. Bovik, "A universal image quality index," IEEE Signal Processing Letters, vol. 9, pp. 81-84, 2002.
[224] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey, "Complex Wavelet Structural Similarity: A New Image Similarity Index," IEEE Transactions on Image Processing, vol. 18, pp. 2385-2401, 2009.
[225] C. Gu, H. Fu, and J.-R. Lien, "Correlation patterns and cross-talk noise in volume holographic optical correlators," Journal of the Optical Society of America A, vol. 12, pp. 861-868, 1995.
[226] G. P. Nordin and P. Asthana, "Effects of cross talk on fidelity in page-oriented volume holographicoptical data storage," Optics Letters, vol. 18, pp. 1553-1555, 1993.
[227] 詹綉綾, "新型灰階編碼於全像儲存系統之研究," 碩士, 國立中央大學, 2007.
[228] S. A. Butman, L. J. Deutsch, and R. L. Miller, "Performance of concatenated codes for deep space missions," The Telecommunications and Data Acquisition Progress Report, 1981.
[229] C. Kraft, "Closed solution of the Berlekamp-Massey algorithm for fast decoding of BCH codes," in IEEE International Conference on Communications, 1990, pp. 458-462. |