博碩士論文 972406011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.12.166.24
姓名 葉智禮(Chi-Li Yeh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氫摻雜氧化鋅透明導電薄膜特性與其在銅銦鎵硒薄膜太陽能電池上之應用
(Hydrogen-doped ZnO-based on CIGS-based thin film solar cells)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文採用射頻磁控濺鍍系統製作氫摻雜氧化鋅(ZnO:H)及氫摻雜氧化鋅鎵(GZO:H),在製程中控制適當的H2/Ar流量比,可濺鍍出高導電性與高穿透率之薄膜ZnO:H和GZO:H當窗層堆疊在CIGS-based 太陽能電池元件上,與傳統上常用的薄膜AZO當窗層堆疊在元件上相互比較後發現,元件ZnO:H的效率為13%比元件AZO的效率為12.4%提升了4.8%倍。與薄膜AZO相比,這是因為薄膜ZnO:H有較高的載子遷移率和較低的載子濃度,使得薄膜ZnO:H同時有相同的電阻率和在近紅外光波段有較高的穿透率,提升元件ZnO:H在近紅外光波段的短路電流。與薄膜AZO相比,雖然薄膜GZO:H有較低的電阻率,但是有較高的載子濃度,使得薄膜GZO:H在近紅外光波段的穿透率因為自由載子吸收增加而下降,造成元件GZO:H的短路電流下降而無法提升元件效率。因此薄膜ZnO:H是非常有潛力取代薄膜AZO當窗層堆疊在大面積尺寸的太陽能電池元件上,因為當薄膜厚度增加時,薄膜ZnO:H比薄膜AZO在近紅外光波段有更高的穿透率。
摘要(英) We obtained the high conductivity and high optical transmittance of ZnO:H and GZO:H films deposited by using a RF magnetron sputtering system with the proper H2/Ar flow ratio. CIGS-based solar cells were fabricated with ZnO:H and GZO:H window layers to replace the conventional AZO window layer. It was found that the cell efficiencies were 12.4% and 13% for the AZO device and the ZnO:H device, respectively. The cell efficiency was enhanced by 4.8% for the ZnO:H device. The results show that the ZnO:H film is higher Hall mobility and lower carrier concentration than AZO film resulted in similar resistivity and higher optical transmittance in the near infrared (NIR). Therefore, the higher cell efficiency of ZnO:H device is due to the enhancement of the short-circuit current (Jsc) in the NIR. Although the GZO:H film is lower resistivity than AZO film due to the higher carrier concentration, the optical transmittance of the GZO:H film shows a decrease in the NIR due to a increase in free carrier absorption. Therefore, a decrease in cell efficiency of GZO:H device is due to a decrease in Jsc. Furthermore, when increasing the thickness of film, the ZnO:H film is more higher optical transmittance in the NIR than AZO film. The ZnO:H film is superior to the AZO film as window layer for the larger-area CIGS-based solar cells.
關鍵字(中) ★ 透明導電薄膜
★ 薄膜太陽能電池
關鍵字(英) ★ transparent conducting oxide
★ CIGS-based solar cell
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3本論文章節編排 4
第二章 透明導電薄膜理論與太陽能電池 5
2.1 Hydrogen-doped ZnO-based理論 5
2.2霍爾量測原理(Hall measurement) 8
2.3柏斯坦-摩斯效應(Burstein-Moss effect) 10
2.4透明導電薄膜在紅外光波段的光學特性 11
2.5 CIGS-based薄膜太陽能電池 14
第三章 透明導電薄膜Hydrogen-doping ZnO (ZnO:H)之材料特性研究 16
3.1薄膜ZnO:H的製程參數選擇 16
3.2改變H2/Ar流量比之薄膜ZnO:H電特性分析 19
3.3改變H2/Ar流量比之薄膜ZnO:H 材料特性分析 21
3.4改變H2/Ar流量比之薄膜ZnO:H光學特性分析 24
第四章 熱退火處理後透明導電薄膜ZnO:H之材料特性研究 26
4.1不同溫度熱退火後之薄膜ZnO:H電特性分析 26
4.2不同溫度熱退火後之薄膜ZnO:H 材料特性分析 29
4.3不同溫度熱退火後之薄膜ZnO:H光學特性分析 33
第五章 透明導電薄膜Hydrogen-doping GZO (GZO:H)之材料特性研究 35
5.1薄膜GZO:H在不同製程溫度之電特性分析 35
5.2改變H2/Ar流量比之薄膜GZO:H電特性分析 36
5.2.1剛鍍完(as-deposited)薄膜GZO:H 36
5.2.2 400℃熱退火後之薄膜GZO:H 39
5.3改變H2/Ar流量比之薄膜GZO:H材料特性分析 43
5.3.1 XPS量測分析 43
5.3.2 XRD量測分析 45
5.4改變H2/Ar流量比之薄膜GZO:H光學特性分析 49
第六章 透明導電薄膜應用在硒化銅銦鎵(CIGS-based)薄膜太陽能電池之研究 51
6.1 CIGS-based薄膜太陽能電池元件製作 51
6.2透明導電薄膜ZnO-based製程參數選擇 55
6.3 CIGS-based薄膜太陽能電池光電特性分析 59
第七章 結論 67
參考文獻 71
參考文獻 1.1 C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, “Low operation voltage of nitride-based LEDs with Al-doped ZnO transparent contact Layer,” J. Electrochem. Soc. 11, H269 (2008).
1.2 P. H. Chen, W. C. Lai, L. C. Peng, C. H. Kuo, C. L. Yeh, J. K. Sheu, and C. J. Tun, “GaN-based LEDs with AZO:Y upper contact,” IEEE Trans. Electron. Devices 57, 134 (2010).
1.3 O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, and H. W. Schook, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films 351, 247 (1999).
1.4 A. Favier, D. Munoz, S. Martin de Nicolas, and P. J. Ribeyron, “Boron-doped zinc oxide layers grown by metal-organic CVD for silicon heterojunction solar cells applications,” Sol. Energy Mater. Sol. Cells 95, 1057 (2001).
1.5 S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49, 394 (1986).
1.6 T. Minami, K. Oohashi, S. Takata, T. Mouri, and N. Ogawa, “Preparations of ZnO:Al transparent conducting films by D.C. magnetron sputtering,” Thin Solid Films 193, 721 (1999).
1.7 K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties,” J. Phys. D: Appl. Phys. 33, R17 (2000).
1.8 F. C. Devy, N. Barreau, and J. Kessler, “Dependence of ZnO:Al properties on the substrate to target position in RF sputtering,” Thin Solid Films 516, 7094 (2008).
1.9 K. Kushiya, M. Tachiyuki, Y. Nagoya, A. Fujimaki, B. Sang, D. Okumura, M. Satoh, and O. Yamase, “Progress in large-area Cu(InGa)Se2-based thin-film modules with a Zn(O,S,OH)x buffer layer,” Sol. Energy Mater. Sol. Cells 67, 11 (2001).
1.10 Y. Hagiwara, T. Nakada, and A. Kunioka, “Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer,” Sol. Energy Mater. Sol. Cells 67, 267 (2001).
1.11 Y. Nagoya, B. Sang, Y. Fujiwara, K. Kushiya, and O. Yamase, “Improved performance of Cu(In,Ga)Se2-based submodules with a stacked structure of ZnO window prepared by sputtering,” Sol. Energy Mater. Sol. Cells 75, 163 (2003).
1.12 B. Sang, Y. Nagoya, K. Kushiya, and O. Yamase, “MOCVD-ZnO windows for 30cm×30cm CIGS-based modules,” Sol. Energy Mater. Sol. Cells 75, 179 (2003).
1.13 S. Y. Myong, and K. S. Lim, “Highly stable and textured hydrogenated ZnO thin films,” Appl. Phys. Lett. 82, 3026 (2003).
1.14 S. Y. Myong, and K. S. Lim, “Improvement of electrical and optical properties of ZnO thin films prepared by MOCVD using UV light irradiation and in situ H2 post-treatment,” Sol. Energy Mater. Sol. Cells 86, 105 (2005).
1.15 S. Y. Myong, S. I. Park, and K. S. Lim, “Improvement of electrical stability of polycrystalline ZnO thin films via intentional post-deposition hydrogen doping,” Thin Solid Films 513, 148 (2006).
1.16 P. K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering,” Thin Solid Films 411, 82 (2002).
1.17 L. Y. Chen, W. H. Chen, J. J. Wang, F. C. N. Hong, and Y. K. Su, “Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 85, 5628 (2004).
1.18 Y. R. Park, J. Kim, and Y. S. Kim, “Effect of hydrogen doping in ZnO thin films by pulsed dc magnetron sputtering,” Appl. Surf. Sci. 255, 9010 (2009).
1.19 D. H. Kim, S. H. Lee, G. H. Lee, H. B. Kim, K. H. Kim, Y. G. Lee, and T. H. Yu, “Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films,” J. Appl. Phys. 108, 023520 (2010).
1.20 S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, and K. S. Lim, “Highly textured and conductive undoped ZnO film using hydrogen post-treatment,” Appl. Phys. Lett. 70, 3516 (1997).
1.21 B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, and J. M. Myoung, “Post-annealing of Al-doped ZnO films in hydrogen atmosphere,” J. Crystal Growth 281, 475 (2005).
1.22 P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G. Yin, and N. F. Chen, “Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment,” J. Appl. Phys. 105, 083713 (2009).
2.1 D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82, 2552 (1999).
2.2 A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61, 15019 (2000).
2.3 A. Janotti, and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005).
2.4 A. Janotti, and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76, 165202 (2007).
2.5 S. Major, A. Banerjee, and K. L. Chopra, “Highly transparent and conducting indium-doped zinc oxide films by spray pyrolysis,” Thin Solid Films 108, 333 (1983).
2.6 T. Minami, H. Sato, H. Nanto, and S. Takata, “Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. 24, L781 (1985).
2.7 J. H. Lee, and B. O. Park, “Transparent conducting ZnO:Al In and Sn thin films deposited by the sol-gel method,” Thin Solid Films 426, 94 (2003).
2.8 M. Miyazaki, K. Sato, A. Mitsui, and H. Nishimura, “Properties of Ga-doped ZnO films,” J. Non-Cryst. Solids 218, 323 (1997).
2.9 T. Minami, T. Miyata, Y. Ohtani, and Y. Mochizuki, “New transparent conducting Al-doped ZnO film preparation techniques for improving resistivity distribution in magnetron sputtering deposition,” Jpn. J. Appl. Phys. 45, L409 (2006).
2.10 A. Asvarov, A. Abduev, A. Akhmedov, and A. A bdullaev, “Effects of a high humidity environment and air anneal treatments on the electrical resistivity of transparent conducting ZnO-based thin films,” Phys. Status Solidi C 7, 1553 (2010).
2.11 Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition,” J. Crystal Growth 259, 130 (2003)
2.12 B. D. Ahn, S. H. Oh, C. H. Lee, G. H. Kim, H. J. Kim, and S. Y. Lee, “Influence of thermal annealing ambient on Ga-doped ZnO thin films,” J. Crystal Growth 309, 128 (2007)..
2.13 B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, and R. A. Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD,” Thin Solid Films 260, 19 (1995).
2.14 S. A. Studenikin, N. Golego, and M. Cocivera, “Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution,” J. Appl. Phys. 83, 2104 (1998).
2.15 H. Gomez, and M. de la L. Olvera, “Ga-doped ZnO thin films: Effect of deposition temperature, dopant, concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties,” Mat. Sci. E. B 134, 20 (2006).
2.16 C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett. 85, 1012 (2000).
2.17 S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilao, J. P. Duarte, N. A. de Campos, A. Weidinger, R. L. Lichti, and S. J. C. Irvine, “Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide,” Phys. Rev. Lett. 86, 2601 (2001).
2.18 D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, and B. K. Meyer, “Hydrogen: A relevant shallow donor in zinc oxide,” Phys. Rev. Lett. 88, 045504 (2002).
2.19 C. G. Van de Walle, and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature, (London) 423, 626 (2003).
2.20 G. A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, and J. Weber, “Hydrogen local modes and shallow donors in ZnO,” Phys. Rev. B 72, 195211 (2005).
2.21 M. G. Wardle, J. P. Goss, and P. R. Briddon, “First-principles study of the diffusion of hydrogen in ZnO,” Phys. Rev. Lett. 96, 205504 (2006).
2.22 A. Janotti, and C. G. van de Walle, “Hydrogen multicentre bonds,” nat. mater. 6, 44 (2007).
2.23 J. Bang, and K. J. Chang, “Diffusion and thermal stability of hydrogen in ZnO,” Appl. Phys. Lett. 92, 132109 (2008).
2.24 L. J. van der Pauw, “A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,” Philips Tech. Rev 20, 220 (1954).
2.25 L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Repts 13, 1 (1958).
2.26 E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632 (1954).
2.27 T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. London, Sect. B 67, 775 (1954).
2.28 M. Fox, “optical properties of solids,” Oxford university press, 2001.
2.29 J. I. Pankove, “Optical process in semiconductors”, Dover, New York, 1971, (chapter 3).
2.30 F. Ruske, V. Sittinger, W. Werner, B. Szyszka, K.-U. van Osten, and K. R. Rix, “Hydrogen doping of DC sputtered ZnO:Al films from novel target material,” Surf. Coat. Technol. 200, 236 (2005).
2.31 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt: Res. Appl 19, 894 (2011).
2.32 M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt: Res. Appl 20, 12 (2012).
2.33 Moller, H. J., “Semiconductors for solar cells,” Artech House (Boston), 1993.
2.34 J. R. Woodyard, and G. A. Landis, “Radiation resistance of thin-film solar cells for space photovoltaic power,” Sol. Cells 31, 297 (1991).
3.1 K. Zakrzewska, T. Pisarkiewicz, and A. Czapla, “Scattering of charge carriers in reactively sputtered CdIn2O4 thin films,” Phys. Status Solidi (a) 99, 141 (1987).
3.2 T. Minami, H. Sato, K. Ohashi, T. Tomofuji, and S. Takata, “Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering,” J. Crystal Growth 117, 370 (1992).
3.3 D. H. Zhang, and H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Appl. Phys. A 62, 487 (1996).
3.4 N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture,” J. Crystal Growth 130, 269 (1993).
3.5 Y. S. Kang, H. Y. Kim, and J. Y. Lee, “ Effects of hydrogen on the structural and electro-optical properties of zinc oxide thin films,” J. Electrochem. Soc. 147, 4625 (2000).
3.6 J. Kiss, A. Witt, B. Meyer, and D. Marx, “Methanol synthesis on ZnO(000). I. hydrogen coverage, charge state of oxygen vacancies and chemical reactivity,” J. Chem. Phys. 130, 184706 (2009).
3.7 J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi, “Effect of thermal annealing on Ga-doped ZnO films prepared by magnetron sputtering,” J. Electrochem. Soc. 154, H521 (2007).
3.8 W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, and Y. L. Chen, “Effect of post-annealing on the optoelectronic properties of ZnO:Ga films prepared by pulsed direct current magnetron sputtering,” Thin Solid Films 518, 3882 (2010).
3.9 L. V. Azaroff, “Element of X-ray Crystallography, McGraw-Hill,” New York, 1968, p552.
4.1 A. Ohtomo, H. Kimura, K. Saito, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, “Lateral grain size and electron mobility in ZnO epitaxial films grown on sapphire substrates,” J. Crystal Growth 214, 284 (2000).
4.2 N. Ohashi, I. Sakaguchi, S. Hishita, Y. Adachi, H. Hareda, and T. Ogino, “Crystallinity of In2O3(ZnO)5 films by epitaxial growth with a self-buffer-layer,” J. Appl. Phys. 92, 2378 (2002).
4.3 E. M. Kaidashev, M. Lorenz, H. V. Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep, pulsed-laser deposition,” Appl. Phys. Lett. 82, 3901 (2003).
4.4 J. P. Wiff, Y. Kinemuchi, and K. Watari, “Hall mobilities of Al- and Ga-doped ZnO polycrystals,” Mater. Lett. 63, 2470 (2009).
5.1 S. Liang, and X. Bi, “Structure, conductivity, and transparency of Ga-doped ZnO thin films arising from thickness contributions,” J. Appl. Phys. 104, 113533 (2008).
5.2 J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, and S. Y. Lee, “Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature,” J. Appl. Phys. 100, 113515 (2006).
5.3 V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G. V. Lashkarev, B. G. Svensson, and R. Yakimova, “Structural and morphological properties of ZnO:Ga thin films,” Thin Solid Films 515, 472 (2006).
5.4 B. T. Lee, T. H. Kim, and S. H. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using rf magnetron sputtering,” J. Phys. D: Appl. Phys. 39, 957 (2006).
5.5 T. H. Kim, S. H. Jeong, I. S. Kim, S. S. Kim, and B. T. Lee, “Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films,” Semicond. Sci. Technol. 20, L43 (2005).
5.6 X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, and H. Ma, “Influence of annealing on the properties of ZnO:Ga films prepared by radio frequency magnetron sputtering,” Thin Solid Films 483, 296 (2005).
5.7 K. K. Kim, S. Niki, J. Y. Oh, J. O. Song, T. Y. Seong, S. J. Park, S. Fujita, and S. W. Kim, “High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing,” J. Appl. Phys. 97, 066103 (2005).
5.8 J. I. Nomoto, M. Konagai, K. Okada, T. Ito, T. Miyata, and T. Minami, “Comparative study of resistivity characteristics between transparent conducting AZO and GZO thin films for use at high temperatures,” Thin Solid Films 518, 2937 (2010).
5.9 B. D. Ahu, J. H. Kim, H. S. Kang, C. H. Lee, S. H. Oh, K. W. Kim, G. E. Jang, and S. Y. Lee, “Thermally stable, highly conductive, and transparent Ga-doped ZnO thin films,” Thin Solid films 516, 1382 (2008).
6.1 K. Herz, A. Eicke, F. Kessler, R. Wachter, and M. Powalla, “Diffusion barriers for CIGS solar cells on metallic substrates,” Thin Solid Films 431, 392 (2003).
6.2 S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Na on the electrical and structural properties of CuInSe2,” J. Appl. Phys. 85, 7214 (1999).
6.3 M. Bodegard, K. Granath, L. Stolt, and A. Rockett, “The behavior of Na implanted into Mo thin films during annealing,” Sol. Energy Mater. Sol. Cells 58, 199 (2005).
6.4 T. Nakada, D. Iga, H. Ohbo, and A. Kunioka, “Effects of Sodium on Cu(In,Ga)Se2-Based thin films and solar cells,” Jpn. J. Appl. Phys. 36, 732 (1997).
6.5 L. Assmann, J. C. Bernede, A. Drici, C. Amory, E. Halgand, and M. Morsli, “Study of the Mo thin films and Mo/CIGS interface properties,” Appl. Surf. Sci. 246, 159 (2005).
6.6 T. Wada, N. Kohara, S. Nishiwaki, and T. Negami, “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells,” Thin Solid Films 387, 118 (2001).
6.7 D. A. Ras, G. Kostorz, D. Bremaud, M. Kalin, F. V. Kurdesau, A. N. Tiwari, and M. Dobeli, “Formation and characterization of MoSe2 for Cu(In, Ga)Se2 based solar cells,” Thin Solid Films 480, 433 (2005).
6.8 D. Hariskos, S. Spiering, and M. Powalla, “Buffer layers in Cu(In,Ga)Se2 solar cells and modules,” Thin Solid Films 480, 99 (2001).
6.9 中田時夫, CIGS太陽能電池の基礎技術,日刊工業新聞社 (2010).
6.10 S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, and S. Niki, “Fabrication of wide-gap Cu(In1_xGax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness,” Sol. Energy Mater. Sol. Cells 87, 541 (2005).
6.11 U. Rau, and M. Schmidt, “Electronic properties of ZnO/CdS/CuInGaSe2 solar cells- aspects of heterojunction formation,” Thin Solid Films 387, 141 (2001).
6.12 M. A. Martinez, J. Herrero, and M. T. Gutierrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells,” Sol. Energy Mater. Sol. Cells 45, 75 (1997).
6.13 D. H. Cho, Y. D. Chung, K. S. Lee, N. M. Park, and K. H. Kim, “Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells,” Thin Solid Films 520, 2115 (2011).
6.14 M. A. Martinez, C. Guillen, M. T. Gutierrez, and J. Herrero, “Optimization of Cds-TCO bilayers for their application as windows in photovoltaic solar cells,” Sol. Energy Mater. Sol. Cells 43, 297 (1996).
6.15 N. F. Cooray, K. Kushiya, A. Fujimaki, I. Sugiyama, T. Miura, D. Okumura, M. Sato, M. Ooshita, and O. Yamase, “Large area ZnO films optimized for graded band-gap Cu(InGa)Se2-based thin-film mini-modules,” Sol. Energy Mater. Sol. Cells 49, 291 (1997).
6.16 B. Sang, K. Kushiya, D. Okumura, and O. Yamase, “Performance improvement of CIGS-based modules by depositing high-quality Ga-doped ZnO windows with magnetron sputtering,” Sol. Energy Mater. Sol. Cells 67, 237 (2011).
6.17 Z. A. Wang, J. B. Chu, H. B. Zhu, Z. Sun, Y. W. Chen, and S.M. Huang, “Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications,” Solid-State Electronics 53, 1149 (2009).
6.18 R. Menner, D. Hariskos, V. Linss, and M. Powalla, “Low-cost ZnO:Al transparent contact by reactive rotatable magnetron sputtering for Cu(In,Ga)Se2 solar modules,” Thin Solid Films 519, 7541 (2011).
6.19 M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, and K. Akimoto, “Thickness study of Al:ZnO film for application as a window layer in Cu(In1-xGax)Se2 thin film solar cell,” Appl. Surf. Sci. 257, 4026 (2011).
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2013-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明