博碩士論文 972406015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:52.23.219.12
姓名 蔡孟倫(Meng-Lun Tsai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
(Design, fabrication and analysis of high-voltage thin-film GaN LEDs on ceramic substrates)
相關論文
★ 影像式外差干涉術之建立★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
★ 氮化物表面電漿生醫感測之理論分析★ 以氮化物表面電漿結構研製的生醫感測微晶片
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了進一步提高發光二極體亮度和減少成本,發光二極體業者傾向於製作高功率和大面積發光二極體以減少晶粒製作和封裝成本。然而元件隨著操作功率與發光面積的增加,伴隨而來的熱和電流聚集使得效能下降,而此一現象又以藍寶石為基板的發光二極體更為嚴重。本論文提出一種結合了晶圓黏合、雷射剝離和高壓串聯製程,成功將氮化物薄膜移轉到具有高導熱係數的陶瓷基板上(230 W/m•K)。
在中尺寸發光二極體方面(508*1066 um2),我們證實了在陶瓷基板上具有3個微晶粒串聯的發光二極體,由於良好電流擴散使得在電流密度200 A/cm2,相較於同樣在陶瓷基板上非串聯發光二極體的插電效率提升26.7%。
在大尺寸發光二極體方面(1143*1143 um2),我們在陶瓷基板上設計不同微晶粒串聯個數並搭配不同比例負電極面積的高壓薄膜氮化物發光二極體,試圖找出最佳化設計。我們發現雖然微晶粒串聯數目愈多,電流傳遞更為均勻,因而單一微晶粒有較低電壓輸出,但同時也因為正電極面積下降導致光輸出減少,因此最佳串聯數目為4個和9個並分別搭配 4.6% 和2.7% 負電極面積/發光區面積,使得在電流密度27 A/cm2的插電效率相較於在陶瓷基板上非串聯發光二極體提升6.4%。
我們比較三種不同結構大尺寸發光二極體(1143*1143 um2) 光電特性隨著電流密度的變化。其中包含了在矽基板上垂直導通氮化物薄膜發光二極體、藍寶石基板上具有16個微晶粒串聯發光二極體以及在陶瓷基板上具有16個微晶粒串聯發光二極體。我們發現雖然在矽基板上垂直導通氮化物薄膜發光二極體電流擴散不如藍寶石基板上具有16個微晶粒串聯發光二極體,但由於矽基板導熱係數(150 W/m•K) 優於藍寶石(36 W/m•K),因此具有較高的飽和電流。而在陶瓷基板(230 W/m•K) 上具有16 個微晶粒串聯發光二極體除了良好電流擴散能力再加上比矽基板(150 W/m•K) 更好導熱係數,使得飽和電流密度能夠高於450 A/cm2 (電功率密度1800 W/cm2)。
摘要(英) In order to further push the performance/cost ratio of solid state lighting, LED manufacturing favors the products with high operation power and large chip sizes, which can greatly save material cost in device fabrication and packaging. However, the devices with increased input power and emitting area are constantly haunted by severe thermal degradation and current crowding, which are the contributing factors to the undesired efficiency droop. The problem is particularly difficult for sapphire-based devices considering the poor thermal conductivity of the substrate. In this dissertation, III–nitride blue LEDs were successfully fabricated on ceramic substrates (thermal conductivity: 230 W/m•K) using thin-film and high-voltage processes.
In middle size aspect (508*1066 um2), we demonstrated ceramic-based high-voltage thin-film GaN LEDs comprising serially connected 31 sub-cells has 26.7% improvement in wall-plug efficiency at the current density of 200 A/cm2 comparing to 1*1 sub-cell owing to its superior current spreading.
In large size aspect (1143*1143 um2), we designed ceramic-based high-voltage thin-film GaN LEDs comprising serially connected 2*2, 3*3 and 4*4 sub-cells, which are fabricated with different n-electrode areas to optimize the wall-plug efficiency. We found that although current spreading can be improved by increasing the cell numbers, leading to lower voltage/cell characteristic and enlarge emitting area. However, owing to the loss of emitting area caused by the increased area of isolation trenches, the output power and the wall-plug efficiency decrease when the cell number exceeds 9 (3*3). Furthermore, 2*2 and 3*3 sub-cells with 4.6% and 2.7% n-electrode/mesa respectively show the optimized design, the wall-plug efficiency are improved by 6.4% comparing to 1*1 sub-cell.
We compared electrical-optical characteristics with increasing current density for large size (1143*1143 um2) light emitting diodes with three different kinds of structures. It include Si-based vertical thin-film LED, sapphire-based LED comprising serially connected 4*4 sub-cells and ceramic-based thin-film LED comprising serially connected 4*4 sub-cells. We found that although the current spreading of Si-based vertical thin-film LED worse than that of sapphire-based LED comprising serially connected 4*4 sub-cells, however, owing to better thermal conductivity of Si (thermal conductivity: 150 W/m•K) than sapphire (thermal conductivity: 36 W/m•K), the saturation current of Si-based vertical thin-film LED is superior to sapphire-based LED comprising serially connected 4*4 sub-cells. For the ceramic-based thin-film LED comprising serially connected 4*4 sub-cells, it simultaneously holds advantages on heat sinking and current spreading, leading to the saturation current density larger than 450 A/cm2, which is better than those of the devices fabricated with identical epitaxial structure on Si or sapphire substrates.
關鍵字(中) ★ High-voltage
★ Ceramic
★ LED
★ Thin-film
★ GaN
關鍵字(英)
論文目次 TABLE OF CONTENTS
ABSTRACT i
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction and motivation 1
1.1 Introduction 1
1.2 Efficiency droop 1
1.3 Epitaxial growth related approaches for droop alleviated 3
1.4 Process related approaches for droop alleviated 4
1.5 Advantage of high-voltage LEDs 8
1.6 Ceramic substrates 9
1.7 Motivation and dissertation overview 10
Chapter 2 Fabrication of high-voltage thin-film GaN LED on ceramic substrates 12
2.1 Introduction 12
2.2 Experimental 12
2.3 Results 37
2.4 Conclusions 44

Chapter 3 Analysis of L-J-V curves for serially connected 31 high-voltage thin-film GaN LED on ceramic substrates 45
3.1 Introduction 45
3.2 Experimental 46
3.3 Results 48
3.4 Conclusions 58
Chapter 4 Optimization of high-voltage thin-film GaN LEDs on ceramic substrates 59
4.1 Introduction 59
4.2 Experimental 59
4.3 Results 59
4.4 Conclusions 73
Chapter 5 Analysis of L-J-V curves for serially connected 44 high-voltage thin-film GaN LED on ceramic substrates 75
5.1 Introduction 75
5.2 Experimental 75
5.3 Results 78
5.4 Conclusions 89
Chapter 6 Summaries and future works 90
6.1 Summaries 90
6.2 Future works 92
References 93
參考文獻 1.1 S. Strite and H. Morkoç, “GaN, AlN, and InN: a review,” J. Vac. Sci. Technol. B 10, 1237-1266 (1992).
1.2 Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43, 354002 (2010).
1.3 C. H. Wang, D. W. Lin, C. Y. Lee, M. A. Tsai, G. L. Chen, H. T. Kuo, W. H. Hsu, H. C. Kuo, T. C. Lu, S. C. Wang, and G. C. Chi, “Efficiency and droop improvement in GaN-based high-voltage light-emitting diodes,” IEEE Electron Device Lett. 32, 1098-1100 (2011).
1.4 S. C. Ling, T. C. Lu, S.-P. Chang, J. R. Chen, H. C. Kuo, and S. C. Wang, “Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 96, 231101 (2010).
1.5 V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A 204, 227-230 (2007).
1.6 Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).
1.7 J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99, 181127 (2011).
1.8 G. B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, and C. Sone, “Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency,” Appl. Phys. Lett. 100, 161106 (2012).
1.9 M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, “Reduced nonthermal rollover of wide-well GaInN light-emitting diodes,” Appl. Phys. Lett. 94, 041103 (2009).
1.10 J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett. 93, 121107 (2008).
1.11 Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4, 082104 (2011).
1.12 C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett. 97, 181101 (2010).
1.13 S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim, and S. J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94, 231123 (2009).
1.14 V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97, 251110 (2010).
1.15 D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 041112 (2011).
1.16 Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electronics 42, 1196-1201, (2006).
1.17 T. Doan, C. Tran, C. Chu, C. Chen, W. Liu, J. Chu, K. Yeh, H. Chen, and F. Fan, “Vertical GaN based light emitting diodes on metal alloy substrate boosts high power LED performance,” Pro. of SPIE 6669, 666903-1 (2007).
1.18 F. Bernardini and V. Fiorentini, “Spontaneous versus Piezoelectric Polarization in III-V Nitrides: Conceptual Aspects and Practical Consequences,” Phys. Stat. Sol. (b) 216, 391 (1999).
1.19 F. Bernardini and V. Fiorentini, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56, R10024 (1997).
1.20 R-H Horng, J-H Lin, D-S Wuu, R-C Lin, and K-C Shen, “High-Voltage Thin GaN LEDs Array,” Pro. of SPIE 8262, 82621H-1 (2012).
1.21 O. B. Shchekin, J. E. Epler1, T. A. Trottier1, T. Margalith1, D. A. Steigerwald1, M. O. Holcomb1, P. S. Martin1 and M. R. Krames1, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes,” Appl. Phys. Lett. 89, 071109 (2006).
1.22 A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitters,” IEEE Trans. Electr. Dev. 57, 79 (2010).
1.23 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚,機械材料學,二版,全華科技圖書股份有限公司,台北市,民國八十五年。
1.24 http://www.maruwa-g.com/e/products/ceramic/ceramic-substrate-3.html.
1.25 http://www.davidlu.net/bcb.htm.
1.26 http://content.yudu.com/Library/A1iejq/CompoundSemiconducto/resources/16.htm.
2.1 T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855 (2004)
2.2 A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high- efficiency InGaN-based light emitters,” IEEE Trans. Electr. Dev. 57, 79 (2010).
2.3 陳學龍,「具垂直結構與金屬基板之高效率氮化鎵系列發光二極體之研製」,國立成功大學,博士論文,民國96年。
2.4 J. O. Song, J. S. Kwak, Y. P. Park, and T.Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett. 86, 062104 (2005).
2.5 H. W. Jang, J. H. Son, and J. L. Lee, “Highly reflective low resistance Ag-based ohmic contacts on p-type GaN using Mg overlayer,” Appl. Phys. Lett. 90, 012106 (2007).
2.6 W. K. Hong, J. O. Song, H. G. Hong, K. Y. Ban, T. Lee, J. S. Kwak, Y. Park, and T. Y. Seong, “Highly reflective and low resistance indium tin oxide/Ag ohmic contacts to p-type GaN for flip chip light emitting diodes,” Electrochem. Solid-State Lett. 8, G320 (2005).
3.1 B. Z. Qu, Q. S. Zhu, X. H. Sun, S. K. Wan, Z. G. Wang, H. Nagai, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, “Photoluminescence of Mg-doped GaN grown by metalorganic chemical vapor deposition,” J. Vac. Sci. Technol. A 21, 838 (2003).
3.2 W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg‐doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 68, 667 (1996).
3.3 K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345, 273 (1999).
3.4 D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 041112 (2011).
3.5 T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855 (2004).
3.6 X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90, 4191 (2001).
5.1 T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855 (2004).
5.2 C. H. Wang, D. W. Lin, C. Y. Lee, M. A. Tsai, G. L. Chen, H. T. Kuo, W. H. Hsu, H. C. Kuo, T. C. Lu, S. C. Wang, and G. C. Chi, “Efficiency and droop improvement in GaN-based high-voltage light-emitting diodes,” IEEE Electron Device Lett. 32, 1098 (2011).
5.3 W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1-xN light-emitting diodes on Si substrates fabricated by Pd-In metal bonding and laser lift-off,” Appl. Phys. Lett. 77, 2822 (2000).
5.4 Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces,” IEEE J. Quantum Electronics 42, 1196 (2006).
5.5 B.G. Streetman, Solid State Electronic Devices., Prentice-Hall, New Jersey, 1995.
5.6 F. Schwierz, “An electron mobility model for wurtzite GaN,” Solid-State Electronics 49, 889 (2005).
5.7 C. S. Chang, S. J. Chang, Y. K. Su, Y. C. Lin, Y. P. Hsu, S. C. Shei, S. C. Chen, C. H. Liu and U. H. Liaw, “InGaN/GaN light-emitting diodes with ITO p-contact layers prepared by RF sputtering,” Semicond. Sci. Technol. 18, L21 (2003).
5.8 P. Bhattacharya, Semiconductor Optoelectronic Devices., Prentice-Hall, New Jersey, 1997.
5.9 K. Iso, H. Yamada, H. Hirasawa, N. Fellows, M. Saito, K. Fujito, S.P. DenBaars, J.S. Speck, and S. Nakamura, “High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate,” Jpn. J. Appl. Phys. 46, L960 (2007).
5.10 K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, D. W. Barlage, K. Udwary, E. A. Preble, and K. R. Evans, “Excitation current dependent cathodoluminescence study of InGaN/GaN quantum wells grown on m-plane and c-plane GaN substrates,” J. Appl. Phys. 106, 113104 (2009).
5.11 C. D. Thurmond, “The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs , and GaP,” J. Electrochem. Soc. 122, 1133 (1975).
指導教授 賴昆佑 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明