博碩士論文 972406018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:13.59.38.113
姓名 謝鎮宇(Chen-Yu Shieh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 有機金屬氣相沉積法成長氮化銦鎵發光二極體之研究
(Growth of InGaN Light-Emitting Diodes by Metal-Organic Vapor Phase Epitaxy)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 利用光展量概念之微型投影機光學設計方法與實作
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 鋅離子佈植摻雜氮化鎵薄膜特性研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前因氮化鎵與藍寶石基板的晶格常數與熱膨脹係數不匹配,因而產生許多的缺陷在磊晶結構中,缺陷密度達108至1010cm-2,因此造成氮化銦鎵發光二極體元件的晶體結構品質較差,進而造成降低氮化銦鎵發光二極體的外部量子轉換效率。本論文旨在研發使用有機金屬氣相沉積法成長高效率發光輸出功率的氮化銦鎵發光二極體元件,重點分為兩個重要的技術,(一)使用新的緩衝層來成長氮化銦鎵發光二極體元件;(二)使用氮化鎵基板來成長氮化銦鎵的紫外光發光二極體元件,分別概述如下。
首先蒸鍍鈦金屬薄膜於藍寶石基板上再置入低壓式的有機金屬沉積儀,透過氮化的過程形成的氮化鈦緩衝層來磊晶成長發光二極體元件,由於氮化鈦緩衝層的薄膜特性再磊晶成長氮化鎵材料時,可形成奈米級的氮化鎵側向磊晶成長層於氮化鈦緩衝層上,藉由使用X射線與螢光反應實驗可觀察到增進磊晶成長後氮化鎵材料晶體品質的效果,利用氮化鎵側向磊晶成長行為減少缺陷密度的產生進而提升氮化鎵的晶體品質,並且將發光二極體的晶體結構應力釋放出68%相較於傳統結構,因此經由電激發光實驗可獲得較高的發光輸出功率45%與42%分別在輸入電流20安培與100安培下,與減少量子侷限史托克效應,這些量測結果反應出成長元件本身時的應力釋放與高晶體品質可得到較高效率的發光輸出功率。
接著再探討使用氮化鎵基板對發光波長在380 奈米的氮化銦鎵紫外光發光二極體元件在晶體結構品質與光電特性上產生的影響,因此首先成長同質結構的氮化銦鎵紫外光發光二極體在氮化鎵基板上並與藍寶石基板在特性上做比較,成長380奈米氮化銦鎵紫外光發光二極體在氮化鎵基板上經由X射線量測可得到較佳的晶體結構品質,其界面粗糙度為1.55%,除此之外當X射線照射在元件的(0002)與 (101 ̅2)面上的半高寬數值可縮小至90arcsec,元件的結構應力釋放可達0.31Gpa,透過穿透式電子顯微技術可更一步分析此元件在多重量子井的晶體品質,因為沒有觀察到缺陷與雜質,因此推測此元件的缺陷密度為3.6106 cm-2或更少,經由電激發光實驗可獲得較高的發光輸出功率80%與90%分別在輸入電流20安培與100安培下,除此之外在高注入電流下觀察到超低的功率掉落3%的元件特性,因此結論採用氮化鎵基板來成長380 奈米的氮化銦鎵紫外光發光二極體元件可獲得高效率的發光輸出功率與在高注入電流下超低的功率掉落。
最後,本文研發使用氫化物氣相磊晶技術來成長氮化鎵基板後,再磊晶成長380 奈米的氮化銦鎵紫外光發光二極體元件於其上並與市售氮化鎵基板在光電特性上做比較。成長氮化銦鎵紫外光發光二極體於市售的氮化鎵基板上的光輸出功率高於成長元件在使用氫化物磊晶法成長的氮化鎵基板70%在20安培電流輸入下,且氮化銦鎵紫外光發光二極體元件的功率掉落特性也是成長元件在市售的氮化鎵基板比較好,從這個結果,我們認為是因市售的氮化鎵基板製造是從砷化鎵基板磊晶而來,且砷化鎵熱膨脹係數相較於藍寶石基板與氮化鎵的差值較小,也就是說使用砷化鎵基板來成長氮化鎵基板可獲得較低的殘留應力使得紫外光發光二極體元件的發光輸出功率獲得提升。
摘要(英) The epitaxial layer of InGaN-based light-emitting diodes (LEDs) still contain a high defect density (around 108-1010 cm-2) and large strain-induced piezoelectric field due to the large lattice mismatch and the difference in thermal expansion coefficients of GaN films and sapphire substrates, resulting in the reduction in the external quantum efficiency (EQE) of InGaN-based LEDs devices. In this dissertation including two topics, we demonstrated light-output-power (LOP) enhancement of the InGaN-based light-emitting diodes (LEDs) by using metal-organic vapor phase epitaxy. One is using a new buffer layer for the growth of InGaN-based LEDs, the other is using free-standing GaN (FS-GaN) substrate for the growth of InGaN-based ultraviolet light-emitting diodes (UV-LEDs).
First, a low-cost and time-saving buffer layer of nitrided titanium (Ti) achieved through the nitridation of a Ti metal layer on a sapphire substrate was used for the epitaxial growth of LEDs achieved by low pressure metal-organic chemical vapour deposition. It showed that the use of the nitrided Ti buffer layer (NTBL) induced the formation of a nanoscale epitaxial lateral overgrowth layer (NELOG) during the epitaxial growth. The effect of in-situ Ti metal nitridation was then improved on the crystal quality of these InGaN-based LEDs from using X-ray diffraction (XRD) and CL results. When evaluated by Raman spectroscopy, the InGaN-based LEDs with an NTBL exhibited larger in-plane compressive stress releasing 68% than the LEDs with a LT-GaN buffer layer. The electroluminescence (EL) results indicate that the LOP of InGaN-based LEDs with an NTBL can be enhanced by 45% and 42% at 20 mA and 100 mA, respectively. These results suggest that the strain relaxation and quality improvement in the GaN epilayer could be responsible for the enhancement of emission power.
Then we investigate the influence of FS-GaN substrates on the performance of 380 nm InGaN-based UV-LEDs with InGaN/InAlGaN MQWs grown atop by atmospheric pressure metal-organic chemical vapor deposition. High-resolution double crystal X-ray diffraction (HRDCXD) analyses demonstrated high-order satellite peaks and clear fringes between them for UV-LEDs epilayers grown on FS-GaN substrate, from which the interface roughness (IRN) was 1.55%. Besides, the full width at half maximum of the HRDCXD rocking curve in the (0002) and (101 ̅2) reflection were reduced to below 90 arcsecond. The Raman results which the calculated in-plane compressive stress was 0.31 GPa indicate that the UV-LEDs epilayers of strain free are grown. Additionally, the effect of FS-GaN substrate on the crystal quality of UV-LEDs epilayers was examined in detail by transmission electron microscopy (TEM). TEM characterizations revealed no defects and V-pits were found in scanned area of InGaN/InAlGaN MQWs. The total defect density including edge, screw and mixed type was considered to be less than 3.6106 cm-2 or less, which agrees well with our HRDCXD rocking curve data, further proving that homo-epitaxial is an effective measure to improve the crystal quality of UV-LEDs epilayers. The LOP of 380 nm UV-LEDs on FS-GaN substrate can be enhanced drastically by 80% and 90% at 20 mA and 100 mA, respectively. Furthermore, an ultra-low efficiency degradation of about 3% can be obtained for 380 nm UV-LEDs on FS-GaN substrate at high injection current. Conclusively, the use of an FS-GaN substrate is suggested to be effective for improving the emission efficiency and droop of UV-LEDs grown thereon.
Finally, we investigated the free-standing GaN substrate fabricating from sapphire substrate by hydride vapor phase epitaxy (HVPE) and using these wafers to grow 380 nm InGaN-based UV-LEDs with InGaN/InAlGaN MQWs on them. The LOP of 380 nm UV-LEDs grown on FS-GaN substrate manufacturing from GaAs substrate by HVPE is higher by 70% and 105% than the FS-GaN substrate fabricating from sapphire at 20 mA and 100 mA, respectively. Besides, the efficiency droop was reduced from 21% in the UV-LEDs grown on FS-GaN substrate fabricating from sapphire substrate to 3% in UV-LEDs grown on FS-GaN substrate manufacturing from GaAs substrate. This result was attributed to less difference of thermal expansion coefficient of GaAs substrate than sapphire substrate, resulting in the less residual stress in the 380 nm UV-LEDs on FS-GaN substrate manufacturing from GaAs substrate which the strain relaxation degree was about 47% than UV-LEDs grown on FS-GaN substrate fabricating from sapphire substrate.
關鍵字(中) ★ 氮化銦鎵
★ 發光二極體
★ 有機金屬氣相沉積法
★ 氮化鈦緩衝層
★ 氮化鎵基板
關鍵字(英) ★ InGaN
★ Light-emitting diodes
★ Metal-organic vapor phase epitaxy
★ nitrided titanium buffer layer
★ Free-standing GaN substrate
論文目次 Chinese Abstract I
English Abstract III
Acknowledge VI
Contents VII
Table Captions IX
Figure Captions X

Chapter 1、 Introduction………………………………………………… 1
1.1 Overviews of III-nitride semiconductor material systems….. 1
1.2 Overview of the dissertation…………………………… 1

Chapter 2、 Metalorganic Vapor Phase Epitaxy System………………... 8
2.1 Introduction………………………………………………… 8
2.2 MOVPE System…………………………………………… 10
2.3 In-Situ Monitoring of Growth Technology…………………12

Chapter 3、 Characteristics of the epitaxy of InGaN-based light-emitting diodes grown by nanoscale epitaxial lateral overgrowth using a nitrided titanium buffer layer………………………. 18
3.1 Introduction………………………………………………… 18
3.2 Growth and fabrication of InGaN-based LEDs with nitrided titanium buffer layer………………………………………...20
3.3 Results and discussion………………………………………22
3.3.1 Crystalline quality ………………………………………….22
3.3.2 Strain relaxation in the InGaN-based LEDs………………..23
3.3.3 Crystalline quality improvement of InGaN-based LEDs structure……………………………………………………..25
3.3.4 Light output power…………………………………………27
3.4 Summary……………………………………………………27

Chapter 4、 Lattice-match heteroepitaxial InxAl1-xN film grown on sapphire substrate with multiple buffer layers by MOVPE……………………………………………………45
4.1 Introduction - Overview of InxAl1-xN film ……………45
4.2 Experiments…………………………………………………47
4.3 Results and discussion………………………………………48
4.3.1 Characterization of heteroepitaxial InxAl1-xN/GaN template……………………………………………………..48
4.3.2 Photoluminescence………………………………………….49
4.4 Summary……………………………………………………. 50

Chapter 5、 High performance 380 nm UV-LEDs with 3% efficiency droop by using free-standing GaN substrate 64
5.1 Introduction………………………………………………… 64
5.2 Experiments…………………………………………………66
5.3 Results and discussion………………………………………67
5.3.1 X-ray diffraction…………………………………………….67
5.3.2 Stress analysis………………………………………………69
5.3.3 Crystalline quality…….71
5.3.4 Localization state……………………………………………73
5.3.5 Optoelectric characteristic………………………………….76
5.3.6 Influence of FS-GaN substrate in UV LEDs from efficiency droop………………………………………………………..78
5.4 Summary……………………………………………………79

Chapter 6、 Free-standing GaN substrate by hydride vapor phase epitaxy for 380 nm InGaN-based UV-LEDs………104
6.1 Introduction - Overview of free-standing GaN substrate…...104
6.1.1 Solution growth at high pressure and high temperature…….104
6.1.2 Liquid phase epitaxy at lower pressure and lower temperatures…………………………………………………105
6.1.3 Ammonothermal growth……………………………………106
6.1.4 Hydride vapor phase epitaxy……………………………….107
6.2 Experiments…………………………………………………108
6.3 Results and discussion………………………………………110
6.4 Summary 112

Chapter 7、 Conclusions and Future Works…………………126
7.1 Conclusions………………………………………………… 126
7.2 Future Works………………………………………………. 128

Publication List ………………………………………………………………132
參考文獻 Chapter1
[1] E. F. Schubert, “Light Emitting Diodes”, second edition, Cambridge University Press. (2006)
[2] S. Nakamura, “The Blue Laser Diode- The Complete Story”, second edition, Springer (2000)
[3] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes”, Appl. Phys. Lett., 67, 1868-1870, 1995.
[4] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, U. H. Liaw, “InGaN/GaN multiple quantum well blue and green light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron, 8, 278-283, 2002.
[5] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched pattern sapphire substrates”, IEEE Photon. Technol. Lett., 18, 1152-1154, 2006.
[6] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, J. K. Sheu, “Nitride-based light emitting diodes with indium tin oxide electrode pattern by imprint lithography”, Appl. Phys. Lett., 91, 013504, 2007.
[7] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunctions”, Appl. Phys. Lett., 60 (24), 3027-3029, 1992.
[8] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett., 62 (15) 1786-1787,1993.
[9] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, U. K. Mishra, “High voltage operation (>80 V) of GaN bipolar junction transistors with low leakage”, Appl. Phys. Lett., 76 (17) 2457-2459, 2000.
[10] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor”, IEEE Electron Device Lett. 20 (6) 277-279, 1999.
[11] C. Y. Shieh, Z. Y. Li, H. C. Kuo, G. C. Chi, “Structural and optical characterizations of GaN-based green light-emitting diodes growth using TiN buffer layer”, Proc. of SPIE 8625, 862529, 2013.
[12] C. Y. Shieh, Z. Y. Li, J. Y. Chang, G. C. Chi, “Characteristics of the epitaxy of InGaN-based light-emitting diodes grown by nanoscale epitaxial lateral overgrowth using a nitrided titanium buffer layer”, Mater. Chem. Phys. 10, 1016 (2015)
[13] C. Y. Shieh, Z. Y. Li, C. H. Chiu, P. M. Tu, H. C. Kuo, G. C. Chi, “Influence of free-standing GaN substrate on ultraviolet light-emitting-diodes by atmospheric-pressure metal-organic chemical vapor deposition”, Proc. of SPIE 8625, 862525, 2013.
[14] C. Y. Shieh, Z. Y. Li, H. C. Kuo, J. Y. Chang, G. C. Chi, “Characterization of 380 nm UV-LEDs grown on free-standing GaN by atmospheric-pressure metal-organic chemical vapor deposition”, Proc. of SPIE 8986, 898629, 2014.
[15] C. Y. Shieh, M. T. Tsai, Z. Y. Li, H. C. Kuo, J. Y. Chang, G. C. Chi, W. I. Lee, “High performance 380-nm ultraviolet light-emitting-diodes with 3% efficiency droop by using free-standing GaN substrate manufacturing from GaAs substrate”, J. nanophotonics 8, 0830811, 2014.
Chapter2
[1] H. Manasevi, F. M. Erdmann, W. I. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials”, J. Electrochem. Soc. 118 (11), 1864-1868, 1971.
[2] H. M. Manasevit, “The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates”, J. Cryst. Growth 13 (14), 306-614, 1972.
[3] J. I. Pankove, E. A. Miller, J. E. Berkeyheiser, “GaN blue light-emitting diodes”, J. Luminescence 5 (1), 84-86, 1972.
[4] I. Akasaki, H. Amano, K. Iitoh, H. Sakai, T. Tanaka, K. Manaba, Inst. Phys. Conf. Ser. 129, 851, 1992.
[5] S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett. 64 (13), 1687-1689, 1994.
[6] S. P. DenBaar, B. Y. Maa, P. D. Dapkus, H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth 77 (1), 188-193, 1986.
[7] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory, and Practice”, Academic Press., Inc., San Diego, 1989.
[8] S. Nakamura, “Analysis of Real-Time Monitoring Using Interference Effects”, Jpn. J. Appl. Phys. 30 (7), 1348-1353, 1991.
[9] H. Amano, I. Akasak, K. Hiramatsu, N. Koide, “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate”, Thin Solid Film 163, 415-420, 1988.
Chapter3
[1] Y. J. Lee, Y. C. Chen, T. C. Lu, Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment, Journal of Physics D: Applied Physics 44 (2011) 224015.
[2] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire, Applied Physics Letters 98 (15) (2011) 151102.
[3] D. W. Lin, C. Y. Lee, C. Y. Liu, H. V. Han, Y. P. Lan, C. C. Lin, G. C. Chi, H. C. Kuo, Efficiency and droop improvement in green InGaN/GaN light-emitting diodes on GaN nanorods template with SiO2 nanomasks, Applied Physics Letters 101 (23) (2012) 233104.
[4] M. H. Crawford, LEDs for Solid-State Lighting: Performance challenges and recent advances, IEEE Journal of selected topics in quantum electronics 15 (4) (2009) 1028.
[5] M. V. Durnev, A. V. Omelchenko, E. V. Yakovlev, I. Y. Evstrtov, S. Y. Karpov, Strain effects on indium incorporation and optical transitions in green-light InGaN heterostructures of different orientations, Physica Status Solidi (a) 208 (11) (2011) 2671-2675.
[6] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, “Photoreflectance study of GaAs/AlAs superlattices: Fit to electromodulation theory”, Appl. Phys. Lett., 48 (10), 353-355, 1986.
[7] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., 30 (10), L1705-L1707, 1991.
[8] D. Wickenden, T. Kistenmacher, W. Bryden, J. Morgan, A. Estes Wickenden, “Heteroepitaxy of Dissimilar Materials Symposium”, Materials. Research Society Symposium Proc. 221, 167-172, 1991.
[9] S. D. Lester, F. A. Ponce, M. G. Graford, D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes”, Appl. Phys. Lett.,66 (10), 1249-1251, 1995.
[10] T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, C. Wetzel, Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells, Applied Physics Letters 96 (3) (2010) 031906.
[11] M. Zhu, S. You, T. Detchprohm, T. Paskova, E. A. Preble, C. Wetzel, Various misfit dislocations in green and yellow GaInN/GaN light emitting diodes, Physica Status Solidi (a) 207 (6) (2010) 1305-1308.
[12] C. S. Kim, H. G. Kim, C. H. Hong, H. K. Cho, Effect of compressive strain relaxation in GaN blue light-emitting diodes with variation of n+-GaN thickness on its device performance, Applied Physics Letters 87 (1) (2005) 013502.
[13] T. Nishinaga, T. Nakano, S. Zhang, “Epitaxial Lateral Overgrowth of GaAs by LPE”, Jpn J. Appl. Phys., 27 (6), L964-L967, 1988.
[14] Y. Kato, S. Kitamura, K. Hiramatsu, N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy”, J. Cryst. Growth,144 (3), 133-140, 1994.
[15] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, I. Akasaki, “Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN”, Jpn. J. Appl. Phys., 37 (3B), L316-L318, 1998.
[16] H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, U. K. Mishra, “Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., 73 (6), 747-749, 1998.
[17] A. Sakai, H. Sunakawa, A. Usui, “Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth”, Appl. Phys. Lett., 73 (4), 481-483, 1998.
[18] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped stained-layer supperlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., 72 (2), 211-213, 1998.
[19] T. S. Zheleva, O. H. Nam, M. D. Bremser, R. F. Davis, Dislocation density reduction via lateral epitaxy in selectively grown GaN structures, Applied Physics Letters 71 (17) (1997) 2472-2474.
[20] A. Sakai, H. Sunakawa, A. Kimura, A. Usui, Self-organized propagation of dislocations in GaN films during epitaxial lateral overgrowth, Applied Physics Letters 76 (4) (2000) 442-444.
[21] D. M. Follstaedt, P. P. Provencio, N. A. Missert, C. C. Mitchell, D. D. Koleska, A. A. Allerma, C. I. H. Ashby, Minimizing threading dislocations by redirection during cantilever epitaxial growth of GaN, Applied Physics Letters 81 (15) (2002) 2758-2760.
[22] M. H. Lo, P. M. Tu, C. H. Wang, Y. J. Cheng, C. W. Hung, S. C. Hsu, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, C. M. Liu, Defect selective passivation in GaN epitaxial growth and its application to light emitting diodes, Applied Physics Letters 95 (21) (2009) 211103.
[23] A. Sakai, H. Sunakawa, A. Kimura, A. Usui, Defect structure in selectively grown GaN films with low threading dislocation density, Applied Physics Letters 71 (19) (1997) 2259-2261.
[24] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, R. H. Horng, Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template, Applied Physics Letters 89 (16) (2006) 161105.
[25] M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, H. C. Huang, High efficiency light emitting diode with anisotropically etched GaN-sapphire interface, Applied Physics Letters 95 (4) (2009) 041109.
[26] D. W. Lin, C. Y. Lee, C. Y. Liu, H. V. Han, Y. P. Lan, C. C. Lin, G. C. Chi, H. C. Kuo, Efficiency and droop improvement in green InGaN/GaN light-emitting diodes on GaN nanorods template with SiO2 nanomasks, Applied Physics Letters 101 (23) (2012) 233104.
[27] S. W. Lee, Lattice strain in bulk GaN epilayers grown on CrN/sapphire template, Applied Physics Letters 94 (8) (2009) 082105.
[28] C. H. Yen, GaN-based light-emitting diode with sputtered AlN nucleation layer, IEEE Photon. Technol. Lett., 24 (4) (2012) 294.
[29] K. Hiramatsu, Epitaxial lateral overgrowth techniques used in group III nitride epitaxy, Journal of Physics: Condensed Matter 13 (32) (2001) 6961.
[30] H. Geng, H. Sunakawa, N. Sumi, K. Yamamoto, A. A. Yamaguchi, A. Usui, Growth and strain characterization of high quality GaN crystal by HVPE, Journal of Crystal Growth, 350 (1) (2012) 44-49.
[31] S. B. Lee, T. W. Kwon, S. H. Lee, J. Park, W. J. Choi, Threading-dislocation blocking by stacking faults formed in an undoped GaN layer on a patterned sapphire substrate, Applied Physics Letters 99 (21) (2011) 211901.
[32] A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. DenBaars, J. S. Speck, Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy, Journal of Applied Physics 109 (10) (2011) 103522.
[33] M. A. Hossain, M. M. Hasan, M. R. Islam, Strain Relaxation via Misfit Dislocation in Step-Graded InGaN Heteroepitaxial Layers Grown on Semipolar (112 ̅2) and (11 ̅01) GaN, International Journal of Applied Physics and Mathsematics 2 (1) (2012) 49-53.
[34] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. 68, 643 (1996).
[35] H. Harima, “Properties of GaN and related compounds studied by means of Raman scattering,” J. Phys.: Condens. Matter 14, (2002) R967-R993.
[36] P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, Y. Gogotsi, GaN nanoindentation: A micro-Raman spectroscopy study of local strain fields, Journal of Applied Physics 96 (5) (2004) 2853-2856.
[37] S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, H. I. Erikson, Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition, Applied Physics Letters 70 (4) (1997) 420-422.
Chapter4
[1] K. McCabe, NYC-DEP, Catskill Delaware in Energy and Infrastructure, 2011.
[2] G. A. Shaw, M. L. Nischan, M. A. Iyengar, S. Kaushik, M. K. Griffin, Proc. SPIE 4126, 83, 2003.
[3] G. Tamulaitis, “ULTRAVIOLET LIGHT EMITTING DEVICES”, Lith. J. Phys. 51, 177-193, 2011.
[4] A. Menter, C. E. M. Griffiths, Lancet 370, 272, 2007.
[5] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, N. Granjean, Appl. Phys. Lett. 89, 062106, 2006.
[6] J. F. Carlin, M. Ilegeme, Appl. Phys. Lett. 83, 668, 2003.
[7] S. Senda, H. Jiang, T. Egawa, Appl. Phys. Lett. 92, 203507, 2008.
[8] W. Y. Weng, S. J. Chang, T. J. Hsueh, C. L. Hsu, M. J. Li, W. C. Lai, Sens. Actuators B 140, 139, 2009.
[9] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48, 353, 1986.
[10] S. nakamura, N. Iwasa, M. Senoh, T. Mukkai, Jpn. J. Appl. Phys. 31, 1258, 1992.
[11] M. Ferhat, F. Bechstedt, Phys. Rev. B 65, 075213, 2002.
[12] R. B. Chung, F. Wu, R. Shivaraman, S. Keller, S. P. DenBaars, J. S. Speck, S. Nakamura, “Growth study and impurity characterization of AlxIn1-xN grown by metalorganic chemical vapor deposition”, J. Crys. Grow. 324, 163-167, 2011.
[13] Schmult S, Siegrist T, Sergent AM, Manfra J, Molnar RJ., Appl. Phys. Lett., 90, 021922, 2007.
[14] Fernandez-Garrido S, Gacevic Z, Calleja E, Appl. Phys. Lett., 93, 191907, 2008.
[15] K. Lorenz, N. Franco, E. Alves, I. M. Watson, R. W. Martin, K. P. O’Donnell, Appl. Phys. Lett. 97, 085501, 2006.
[16] M. J. Lukitsch, Y. V. Danylyuk, V. M. Naik, C. Huang, G. W. Auner, L. Rimai, R. Naik, Appl. Phys. Lett. 79, 632, 2001.
[17] Z. Chen, K. Fujita, J. Ichikawa, Y. Sakai, T. Egawa, “Deep Traps in InAlN Lattice-Matched to GaN Grown by Metal Organic Chemical Vapor Deposition Studies by Deep-Level Transient Spectroscopy”, J. Appl. Phys. 50, 081001, 2011.
[18] A. T. Cheng, Y. K. Su, W. C. Lai, Y. Z. Chen, S. Y. Kuo, “Characterization of Mg-Doped AlInN Annealed in Nitrogen and Oxygen Ambients”, J. Electr. Mater. 37 (8), 1070-1075, 2008.
[19] Zhou L, Smith DJ, McCartney MR, Katzer DS, Storm DF, Appl. Phys. Lett., 90, 081917, 2007.
[20] Sahonta SL, Dimitatrakopulos GP, Kehagias T, Kioseoglous J, Adikimenakis A, Iliopoulos E, Appl. Phys. Lett. 95, 021913, 2009.
Chapter5
[1] G. Tamulaitis, “Ultraviolet light emitting diodes,” Lithuanian J. Phys. 51(3), 177-193 (2011) [doi:10.3952/lithjphys.51307]
[2] E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, and M. Razeghi, “Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates,” Appl. Phys. Lett. 96(26), 261107 (2010) [doi:10.1063/1.3457783].
[3] A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77-84 (2008) [doi:10.1038/nphoton.2007.293].
[4] H. Sakuta, T. Fukui, T. Miyachi, K. Kamon, H. Hayashi, N. Nakamura, Y. Uchida, S. Kurai, and T. Taguchi, “Near-ultraviolet LED of the External Quantum Efficiency Over 45% and its Application to High-color Rendering Phosphor Conversion White LEDs,” J. Light & Vis. Env. 32(1), 39-42 (2008) [doi:10.2150/jlve.32.39].
[5] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultraviolet Chip,” Jpn. J. Appl. Phys. 41, L371-L373 (2002) [doi:10.1143/JJAP.41.L371].
[6] F. Hide, P. Kozody, S. P. DenBaars, and A. J. Heeger, “White light from InGaN/conjugated polymer hybrid light-emitting diodes,” Appl. Phys. Lett. 70 (20), 2664-2666 (1997) [doi:10.1063/1.118989].
[7] G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorine-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87 (10), 103505 (2005) [doi:10.1063/1.2039991].
[8] H. S. Kwack, B. J. Kwon, J. S. Chung, Y. H. Cho, S. Y. Kwon, H. J. Kim, and E. Yoon, “Violet-light spontaneous and stimulated emission from ultrathin In-rich InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 93 (16), 161905 (2008) [doi:10.1063/1.3002300].
[9] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett. 89 (16), 161105 (2006) [doi:10.1063/1.2363148].
[10] H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes,” J. Appl. Phys. 97 (9), 091101 (2005) [doi:10.1063/1.1899760].
[11] P. M. Tu, C. Y. Chang, S. C. Huang, C. H. Chiu, J. R. Chang, W. T. Chang, D. S. Wuu, H. W. Zan, C. C. Lin, H. C. Kuo, and C. P. Hsu, “Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier,” Appl. Phys, Lett. 98 (21), 211107 (2011) [doi:10.1063/1.3591967].
[12] T. Wang, Y. H. Liu, Y. B. Lee, Y. Izumi, J. P. Ao, J. Bai, H. D. Li, and S. Sakai, “Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes,” J. Cryst. Growth. 235, 177-182 (2002) [doi:10.1016/S0022024801019182].
[13] A. Armstrong, T. A. Henry, D. D. Koleske, M. H. Crawford, and K. R. Westlake, “Dependence of radiative efficiency and deep level defect incorporation on threading dislocation density for InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 101 (16), 162102 (2012) [doi:10.1063/1.4759003].
[14] Y. H. Fang, Y. K. Fu, and R. Xuan, “High efficiency and output power of near-ultraviolet light-emitting diodes grown on GaN substrate with back-side etching,” Phys. Scr. 85, 045703 (2012) [doi:10.1088/00318949/85/04/045703].
[15] X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrate,” Appl. Phys. Lett. 84 (21), 4313-4315 (2004) [doi:10.1063/1.1756683].
[16] K. C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, Z. Jia, M. Satio, S. Nakamura, S. P. DenBaars, J. S. Speck, and K. Fujito, “Study of nonpolar m-plane InGaN/GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition,” Appl. Phys. Lett. 91 (18), 181120 (2007) [doi:10.1063/1.2805029].
[17] P. perlin, V. Iota, B. A. Weinstein, P. Wisniewski, T. Suski, P. G. Eliseev, M. Osinski, Appl. Phys. Lett. 70, 2993 (1997)
[18] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, S. Nakamura, Appl. Phys. Lett. 70, 981 (1997)
[19] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett. 91 (18), 183507 (2007)
[20] X. Ni, Q. Fan, R. Shimada, U. Ozgur, H. Morkoc, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells”, Appl. Phys. Lett. 93 (17), 171113 (2008)
[21] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, “Auger recombination in InGaN measured by photoluminescence”, Appl. Phys. Lett. 91 (14), 141101 (2007)
[22] A. Y. Kim, W. Gotz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, F. M. Steranka, “Performance of High Power AlInGaN Light Emitting Diodes”, Phys. Status Solidi A 188 (1), 15 (2001)
[23] T. Nakamura, K. Motoki, “GaN substrate technologies for optical devices,” Prod. of the IEEE 101 (10), 2221-2228 (2013) [doi:10.1109/JPROC.2013.2274930].
[24] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett. 68 (5), 643-645 (1996) [doi:10.1063/1.116495].
[25] S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske, and C. R. Abernathy, “Effect of threading dislocation on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers,” Appl. Phys. Lett. 86 (24), 241904 (2005) [doi:10.1063/1.1947367].
[26] G. Bhagavannarayana, R. V. Ananthamurthy, G. C. Budakoti, B. Kumar, K. S. Bartwal,”A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR,” J. Appl. Cryst. 38, 768-771 (2005) [doi:10.1107/S0021889805023745].
[27] J. C. Zhang, D. S. Jiang, Q. Sun, J. F. Wang, Y. T. Wang, J. P. Liu, J. Chen, R. Q. Jin, J. J. Zhu, and H. Ying, “Influence of dislocations on photoluminescence of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 87 (7), 071908 (2005) [doi:10.1063/1.2012531].
[28] Z. Y. Li, W. Y. Uen, M. H. Lo, C. H. Chiu, P. C. Lin, C. T. Hung, T. C. Lu, H. C. Kuo, S. C. Wang, and Y. C. Huang, “Enhancing the Emission Efficiency of In0.2Ga0.8N/GaN MQW Blue LED by Using Appropriately Misoriented Sapphire Substrates,” J. Electrochemical Society 156 (2), H129-H133 (2009) [doi:10.1149/1.3033401].
[29] Y. Ishikawa, M. Tashiro, K. Hazu, K. Furusawa, H. Namita, S. Nagao, K. Fujito, S. F. Chichibu, “Local lifetime and luminescence efficiency for the near-band-edge emission of free-standing GaN substrates determined using spatio-time-resolved cathodoluminescence,” Appl. Phys. Lett. 101 (21), 212106 (2012) [doi:10.1063/1.4767357].
[30] N. Liu, J. Wu, W. Li, R. Luo, Y. Tong, G. Zhang, “Highly uniform growth of 2-inch GaN wafers with a multi-wafer HVPE system,” J. Cryst. Growth. 388, 132-136 (2014) [doi:10.1016/S0022024813007756].
[31] H. Harima, “Properties of GaN and related compounds studied by means of Raman scattering,” J. Phys.: Condens. Matter 14, R967-R993 (2002) [doi:10.1088/0953-8984/14/38/201].
[32] P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, and Y. Gogotsi, “GaN nanoindentation: A micro-Raman spectroscopy study of local strain fields,” J. Appl. Phys. 96 (5), 2853-2856 (2004) [doi:10.1063/1.1775295].
[33] S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, “Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition”, Appl. Phys. Lett. 70 (4), 420-422 (1997)
[34] H. J. Chang, C. H. Chen, Y. F. Chen, T. Y. Lin, L. C. Chen, K. H. Chen, and Z. H. Lan, “Direct evidence of nanocluster-induced luminescence in InGaN epifilms”, Appl. Phys. Lett. 86 (2), 021911 1-3 (2005)
[35] T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi, K. Nishino, and S. Sakai, “Role of dislocation in InGaN phase separation”, Jpn. J. Appl. Phys. 37 (108), L1195-L1198 (1998)
[36] Y. Sun, Y. H. Cho, H. M. Kim, and T. W. Kang, “High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays”, Appl. Phys. Lett. 87 (9), 093115 1-3 (2005)
[37] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
[38] R. Intartaglia, B. Maleyre, S. Ruffenach, O. Briot, T. Taliercio, B. Gil, Appl. Phys. Lett. 86, 142104 (2005).
[39] Y. P. Varshni, Physica 34, 149 (1967).
[40] P. G. Eliseev, J. Appl. Phys. 93, 5404 (2003)
[41] Z. Y. Li, M. H. Lo, C. H. Chiu, P. C. Lin, H. C. Kuo, J. Appl. Phys. 105, 013103 (2009).
[42] K. Kazlauskas, G. Tamulaitis, A. Zukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, R. Gaska, Appl. Phys. Lett. 83, 3722 (2003).
[43] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes”, Appl. Phys. Lett. 83 (24), 4906 (2003)
[44] X. A. Cao, and S. F. LeBoeuf, “Current and temperature dependent characteristics of deep-ultraviolet light-emitting diodes”, IEEE Trans. Electron Devices 54 (12), 3414-3417 (2007)
[45] S. F. Yu, R. M. Lin, S. J. Chang, and F. C. Chu, “Efficiency Droop Characteristics in InGaN-Based Near Ultraviolet-to-Blue Light-Emitting Diodes,” Appl. Phys. Express 5, 022102 (2012) [doi:10.1143/APEX.5.022102].
Chapter6
[1] S. Porowski, I. Grzegory, “Thermodynamical properties of III-nitrides and crystal growth of GaN at high N2 pressure”, J. Cryst. Growth 178, 174-188 (1997).
[2] M. Bockowski, “Review: Bulk growth of gallium nitride: Challenges and difficulties “, Cryst. Res. Technol. 42 (12), 1162-1175 (2007).
[3] D. R. Gilbert, A. Novikov, N. Patrin, J. S. Budai, F. Kelly, R. Chodelka, R. Abbaschian, S. J. Pearton, R. Singh, “High-pressure process to produce GaN crystals”, Appl. Phys. Lett. 77 (25), 4172-4174 (2000).
[4] M. Bockowski, P. Strak, I. Grzegory, B. Lucznik, S. Porowski, “GaN crystallization by the high-pressure solution growth method on HVPE bulk seed”, J. Cryst. Growth 310, 3924-3933 (2008).
[5] M. Bockowski, “High nitrogen pressure solution growth of GaN”, Jpn. J. Appl. Phys 53, 100203 (2014)
[6] H. Yamane, M. Shimada, T. Sekiguchi, F. J. DiSalvo, “Preparation of GaN Single Crystals Using a Na Flux”, Chem. Mater. 9 (2), 413-416 (1997).
[7] F. Kawamura, M. Morishita, M. Tanpo, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, T. Sasaki, “Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method”, J. Cryst. Growth 310, 3946-3949 (2008).
[8] F. Kawamura, H. Umeda, M. Kawahara, M. Yoshimura, Y. Mori, T. Sasaki, H. Okado, K. Arakawa, H. Mori, “Drastic decrease in dislocation during liquid phase epitaxy growth of GaN single crystals using Na flux method without any artificial processes”, J. J. Appl. Phys. 45, 2528-2530 (2006).
[9] E. Maissner, B. Birkmann, S. Hussy, G. Sun, J. Friedrich, G. Mueller, “Characterization of GaN crystals and epilayers grown from a solution at room pressure”, Phys. Status. Solidi. C 2, 2040-2043 (2005).
[10] B. N. Feigelson, R. M. Frazier, M. Gowda, J. A. Freitas, M. Fatemi, M. A. Mastro, J. G. Tischer, “Seeded growth of GaN single crystals from solution at near atmospheric pressure”, J. Cryst. Growth 310, 3934-3940 (2008).
[11] Y. Mori, M. Imade, M. Maruyama, M. Yoshimura, “Growth of GaN Crystals by Na Flux Method”, ECS J. Solid State Sci. Tech. 2 (8), N3068-N3071 (2013).
[12] D. R. Ketchum, J. W. Kolis, “Crystal growth of gallium nitride in supercritical ammonia”, J. Cryst. Growth 222, 431-434 (2001).
[13] R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, J. M. Baranowski, M. Kaminska, “AMMONO method for GaN and AlN production”, Diamond Related Mater. 7, 1348-1350 (1998).
[14] B. Wang, M. Callahan, “Transport growth of GaN crystals by the ammonothermal technique using various nutrients”, J. Cryst. Growth 291, 455-460 (2006).
[15] T. Hashimoto, K. Fujito, F. Wu, B. Haskell, P. T. Fini, J. S. Speck, S. Nakamura, “Structural characterization of thick GaN films grown on free-standing GaN seeds by ammonothermal method using basic ammonia”, Jpn. J. Appl. Phys. 44 (25), L797-L799 (2005).
[16] D. R. Ketchum , J. W. Kolis, “Crystal growth of gallium nitride in supercritical ammonia”, Proc. Mater. Res. Soc. Symp. Proc. 495, 367-371 (1998).
[17] T. Fukuda, D. Ehrentraut, “Prospects for ammonothermal growth of large GaN crystals”, J. Cryst. Growth 305, 304-310 (2007).
[18] M. P. D’Evelyn, H. C. Hong, D. S. Park, H. Lu, E. Kaminsky, R. R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, R. J. Molnar, “Bulk GaN crystal growth by the high-pressure ammonothermal method”, J. Cryst. Growth 300, 11-16 (2007).
[19] R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, H. Hayashi, “Excellent crystallinity of truly bulk ammonothermal GaN”, J. Cryst. Growth 310, 3911-3916 (2008).
[20] T. Detchprohm, K. Hiramatsu, H. Amano, I. Akasaki, “Hydride vapor phase epitaxial growth of a high quality GaN films using a ZnO buffer layers”, Appl. Phys. Lett. 61 (22), 2688-2690 (1992).
[21] T. Paskova, J. Birch, S. Tungasmita, R. Beccard, M. Kueken, E. B. Svedberg, P. Runesson, E. M. Goldys, B. Monemar, “Thick hydride vapor phase epitaxial GaN layers grown on sapphire with different buffers”, Phys. Status. Solidi. A 176, 415-419 (1999).
[22] T. Paskova, E. Valcheva, J. Birch, S. Tungasmita, P. O. A. Persson, P. P. Paskov, S. Evtimova, M. Abrashev, B. Monemar, “Defect and stress relaxation in HVPE-GaN films using high temperature reactively sputtered AlN buffer”, J. Cryst. Growth 230, 381-386 (2001).
[23] Y. Oshima, T. Eri, H. Sunakawa, A. Usui, “Fabrication of freestanding GaN wafers by hydride vapor phase epitaxy with void-assisted separation”, Phys. Status. Solidi. A 194 (2), 554-558 (2002).
[24] O. Parillaud, V. Wagner, H. J. Buehlmann, M. Ilegems, “Localised epitaxy of GaN by HVPE on SiC and sapphire substrates”, MRS Int. J. Nitride Semi. Res. 4 (1), G4.3 (1999).
[25] A. Usui, H. Sunakawa, A. Sakai, A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy”, Jpn. J. Appl. Phys. 36, L899-L902 (1997).
[26] H. Sone, S. Nambu, Y. Kawaguchi, M. Yamaguchi, H. Miyake, K. Hiramatsu, Y. Iyechika, T. Maeda, N. Sawaki, “Optical and crystalline properties of epitaxial-overgrown-GaN using tungsten mask by hydride vapor phase epitaxy”, Jpn. J. Appl. Phys. 38, L356-L359 (1999).
[27] K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukito, H. Seki, “Growth and characterization of freestanding GaN substrates”, J. Cryst. Growth 237, 912-921 (2002).
[28] Chih-Chien P., Shuji N., DenBaars SP, “High ligh extraction efficiency light-emitting diodes grown on bulk GaN and sapphire substrates using vertical transparent package”, Conf Lasers Electro-Optics (CLEO) 2012, 6-11 (2012).
[29] M. T. Tsai, C. M. Chu, C. H. Huang, Y. H. Wu, C. H. Chiu, Z. Y. Li, P. M. Tu, W. I. Lee, H. C. Kuo, ”The effect of free-standing GaN substrate on carrier localization in ultraviolet InGaN light-emitting diodes”, Nanos. Res. Lett. 9, 675 (2014).
[30] P. M. Tu, C. Y. Chang, S. C. Huang, C. H. Chiu, J. R. Chang, W. T. Chang, D. S. Wuu, H. W. Zan, C. C. Lin, H. C. Kuo, and C. P. Hsu, “Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier,” Appl. Phys, Lett. 98 (21), 211107 (2011)
指導教授 紀國鐘、張正陽(Gou-Chung Chi Jenq-Yang Chang) 審核日期 2015-6-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明