博碩士論文 973202017 詳細資訊


姓名 詹宗儀(Chung-Yi Zhan)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 圓形中空複合構材耐震性能研究
(Seismic behavior of concrete-filled double skin steel tubular members)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 中空雙鋼管混凝土複合構材(CFDST)應用於高層結構與橋柱具有極大的潛力,當地震發生時構材常須承受扭矩或與扭矩耦合之組合載重。此研究針對圓形中空雙鋼管混凝土構造進行一系列之彎矩與扭矩組合載重試驗,藉以探其耐震性能。
由實驗結果可知,在相同外徑尺度下,中空雙鋼管混凝土複合構材之強度、勁度與能量消散能力均較鋼管混凝土為佳。由實驗結果亦發現,當斷面空心比增大時,構材之能量消散能力降低,其勁度遞減率隨之增大。
本研究亦依據實驗結果,提出彎矩與扭矩組合載重下之強度互制公式,以提供工程設計參考。
摘要(英) Concrete-filled double skin tubes (CFDST) have a great potential to be applied in the construction of high-rise buildings and bridge piers. In practice, columns often bear additional torque when earthquake occur. This paper describes a series of torsion-bending combined loading tests carried out on CFDST, both outer and inner are circular hollow section. Purpose of this study is to investigate their seismic performance experimentally. The two test parameters of this research considered were a sectional void ratio and an eccentric ratio of loading. As a result, CFDST members were found to have significant increase in strength, stiffness, ductility and energy absorption compared with the same dimension circular concrete-filled tubular members, it also showed that the energy absorption capacities decreased when sectional void ratio increased, and further verified from response comparisons that the members’ stiffness deterioration rates were increased when sectional void ratio increased. The purposed methods for ultimate strength predictions of composite members were in good agreement with the experimental results. Finally, a simplified expression for composite members’ stiffness evaluation was proposed for engineering references.
關鍵字(中) ★ 組合載重
★ 中空
★ 複合構件
關鍵字(英) ★ combined loading
★ hollow
★ composite member
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
照片目錄 xiii
符號說明 xiv
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法與範圍 3
第2章 文獻回顧 4
2.1 國內外相關研究 4
2.2 現行各國SRC構造規範對填充型鋼管混凝土構材概述 10
2.3 彎矩與扭矩互制行為 14
第3章 理論闡述與推導 16
3.1 混凝土的材料特性 16
3.2 鋼的材料特性 17
3.3 複合構件EI計算 20
3.4 彎矩強度計算 21
3.5 扭轉強度計算 23
第4章 實驗規劃與流程 26
4.1 實驗規劃 26
4.2 研究參數 27
4.3 試體標號 28
4.4 試體製作 28
4.5 實驗設施 30
4.6 實驗方法與步驟 31
4.7 加載位移 33
第5章 實驗分析與討論 34
5.1 實驗觀察 34
5.2 實驗量測 45
5.3 實驗結果分析 48
第6章 結論與建議 57
6.1 結論 57
6.2 建議 57
參考文獻 58
表 62
圖 69
照片 142
參考文獻 ACI Committee 318. (2008). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute, Farmington Hills.
AISC. (2005). Load andResistance Factor Design Specificaton for Structural Steel Buildings. Chicago.
Architectural Institute of Japan (AIJ). (1997). Recommendations for design and construction of concrete filled steel tubular structures. Architectural Institute of Japan, Japan.
Architectural Institute of Japan (AIJ). (2001). Standard for structural calculation of steel reinforced concrete structures, 5th edition. Architectural Institute of Japan, Japan.
ATC-24. (1992). “Guidelines for cyclic seismic testing of components of steel structures for buildings,” Report No. ATC-24, Applied Technology Council, Redwood City, CA.
Brauns, J. (1999). “Analysis of stress state in concrete -filled steel column.” Journal of constructional steel research, 49(2), 189-196.
Chang, K. C., Chang, D. W., Tsai, M. H., and Sung, Y. C. (2000). “Seismic performance of highway bridges.” Earthquake engineering and engineering seismology, 2(1), 55-77.
Chen, W. F. and Saleeb, A. F. (1992). Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling. Wiley, New York, 252-255.
Fujimoto, T., Mukai, A., Nishiyama, I., and Sakino, K. (2004). “Behavior of eccentrically loaded concrete-filled steel tubular columns.” Journal of structural engineering, ASCE, 130(2), 203-212.
Furlong, R. W. (1968). “Design of steel-encased concrete beam-columns.” Journal of structural division, ASCE, 94(1), 267-81.
Ge, H., and Usami, T. (1992). “Strength of concrete-filled thin walled steel box columns: experiment.” Journal of structural engineering, ASCE, 118(11), 3036-3054.
Han, L. H., Huang, H., Tao, Z., and Zhao, X. L. (2006). “Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending.” Engineering structures, 28(12), 1698-1714.
Han, L. H., Huang, H., and Zhao, X. L. (2009). “Analytical behavior of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading.” Thin-walled structures, 47(6-7), 668-680.
Han, L. H., and Yang, Y. F. (2005). “Cyclic performance of concrete-filled steel CHS columns under flexural loading.” Journal of constructional steel research, 61(4), 423-452.
Han, L. H., Yao, G. H., and Tao, Z. (2007). “Performance of concrete-filled thin-walled steel tubes under pure torsion.” Thin-walled structures, 45(1), 24-36.
Kitada, T. (1998). “Ultimate strength and ductility of state-of-art concrete-filled steel bridge piers in Japan.” Engineering structures, 20(4-6), 347-354.
Krawinkler, H., Gupta, A., Medina, R., and Luco, N. (2000). Development of loading histories for testing of steel beam-to-column assemblies. SAC background report SAC/BD-00/10.
Lee, E. T., Yun, B. H., Shim, H. J., Chang, K. H., and Lee, George C. (2009). “Torsional behavior of concrete-filled circular steel tube columns.” Journal of structural engineering, ASCE, 135(10), 1250-1258.
Lessig, N. N. (1961) “Studies of cases of concrete failure in rectangular reinforced concrete element subjected to combined flexure and torsion.” Design of reinforced structures. State publishing offices of literature on structural engineering, Architecture and construction materials, Moscow, 229-271.
Lu, X., and Hsu, C. T. T. (2007). “Stress-strain relations of high-strength concrete under triaxial compression.” Journal of materials in civil engineering, ASCE, 19(3), 261-268.
Morino, S., and Tsuda, K. (2003). “Design and construction of concrete-filled steel tube column system in Japan.” Earthquake engineering and engineering seismology, 4(1), 51-73.
Nakahara, H., Sakino, K., and Inai, E. (1998). “Analytical model for axial compressive behavior of concrete filled square steel tubular columns.” Proc., JCI, Vol. 20, 812-822.
Neogi, PK., Sen, HK.,and Chapman, JC. (1969). “Concrete-filled tubular steel columns under eccentric loading.” The structutal engineer, 47(5), 187-195.
Sakino, K. and Sun, Y. (1994). “Stress-strain curve of concrete confined by rectilinear hoop.” J. Struct. Constr. Eng., 461, 95-104.
Sakino, K., Nakahara, H., Morino, S., and Nishiyama, I. (2004). “Behavior of centrally loaded concrete-filled steel-tube short columns.” Journal of structural engineering, ASCE, 130(2), 180-188.
Shakir-Khalil, H., and Mouli, M. (1990). “Further tests on concrete-filled rectangular hollow section columns.” The structutal engineer, 68(20), 405-413.
Shanmugam, N. E., and Lakshmi, B. (2001). “State of the art report on steel-concrete composite columns.” Journal of constructional steel research, 57(10), 1041-1080.
Tamura, J., Hakuno, M., Iemura, K., and Takeuchi, M. (1986) “Damages from the Mexico earthquake 1985.” J. JSCE, 71, 79-85.
Tao, Z., Han, L. H., and Zhao, X. L. (2004). “Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns.” Journal of constructional steel research, 60(8), 1129-1158.
Uenaka, K., Kitoh, H., and Sonoda, K. (2008). “Concrete filled double skin tubular members subjected to bending.” Steel and composite structures, 8(4), 297-312.
Wei, S., Mau, S. T., Vipulanandan, C., and Mantrala, S. K. (1995). “Performance of new sandwich tube under axial loading: experiment.” Journal of structural engineering, ASCE, 121(12), 1806-1814.
Zhao, X. L., and Grzebieta, R. (2002). “Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes.” Thin-walled structures, 40(2), 199-213.
方一匡、彭成安,「輕質骨材鋼筋混凝土梁在彎矩與扭矩組合載重下之承力行為」,國立成功大學土木研究所,臺南(2004)。
內政部營建署,鋼骨鋼筋混凝土構造設計規範與解說,營建雜誌社,臺北(2004)。
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2011-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡