博碩士論文 973202024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.144.122.1
姓名 董佩宜(Pei-Yi Dung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用多項式摩擦單擺支承之隔震橋梁研究
(Isolated Bridges Using Polynomial Friction Pendulum Isolator)
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 橋梁含多重防落裝置之極限狀態動力分析
★ 強震中橋梁極限破壞三維分析★ 隔震橋梁之最佳化結構控制
★ 跨越斷層橋梁之極限動力分析★ 塑鉸極限破壞數值模型開發
★ 橋梁直接基礎搖擺之極限分析★ 考量斷層錯動與塑鉸破壞之橋梁極限分析
★ Impact response and shear fragmentation of RC buildings during progressive collapse★ 應用多項式滾動支承之隔震橋梁研究
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傳統滑動隔震支承雖對於一般遠域震波有不錯隔震效果,但對於近斷層震波則易造成低頻共振現象,降低減震效果。為改善此問題,本文採用具有變頻特性之多項式摩擦單擺支承(Polynomial Friction Pendulum System, PFPI)為橋梁隔震支承。PFPI為滑動隔震支承,其曲面函數為六次多項式,經由多項式係數變化,可使支承有不同隔震效果:軟化段和硬化段。軟化段作用為降低結構物加速度反應;硬化段則是降低結構物位移反應。
根據前人研究已證實PFPI對於建築物有良好隔震效果,然而其尚未有應用於橋梁隔震之實例。本文採用PFPI為橋梁隔震支承,對其展開一系列研究:(1)以實驗驗證PFPI隔震橋理論之正確性、(2)使用PSO-SA混和搜尋法搜尋支承設計最佳參數,(3)根據日本道路橋示方書建立一座橋梁模型,以PFPI與傳統摩擦單擺支承(Friction Pendulum System, FPS)為隔震支承,比較兩支承隔震效益。研究結果顯示,PFPI較FPS有良好隔震效果,且由於PFPI多功特性(軟化與硬化),吾人可依據實際需求設計支承隔震行為。
摘要(英) Conventional sliding isolators may be effective when the structures are subjected to far-field ground motions, but it may not be effective when the structures are subjected to near-field ground motions because the pulse periods of the near-field ground motions are usually close to the isolation periods of the isolators, and it may lead isolated structures to resonate with the ground motions. In order to improve the performance of seismic isolation under near-field ground motions, a various frequency isolator which is named Polynomial Friction Pendulum System (PFPI) is used in this study. The sliding surface of PFPI consists of six-order polynomial. The restoring stiffness possesses two sections: softening section and hardening section. The structural acceleration response can be reduced by decreasing the restoring stiffness, while the structural displacement response can be reduced by increasing the restoring stiffness of PFPI.
Both theoretical and experimental studies were carried out in this thesis which includes: (1) A shaking table test for simplified isolated bridge model by using PFPI; (2) find out the optimal parameters of PFPI by using PSO-SA hybrid algorithm; (3) compare the isolation effectiveness between PFPI and Friction Pendulum System (FPS). The results show that PFPI has better performance than FPS. Because the multi-function of PFPI (softening section and hardening section), it offers us different choices to do a design.
關鍵字(中) ★ 變曲率隔震支承
★ 變頻式隔震支承
★ 滑動隔震支承
★ 近域震波
★ 振動台實驗
關鍵字(英) ★ shaking table test
★ near-field ground motion
★ sliding isolator
★ variable-curvature seismic isolator
★ various frequencies seismic isolator
論文目次 摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表 目 錄 VII
圖 目 錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究內容 5
第二章 多項式摩擦單擺支承 7
2.1 支承力學行為 7
2.2 多項式摩擦單擺支承曲面函數 10
2.3 支承參數變化與支承行為之探討 13
2.4 摩擦子尺寸效應 13
第三章 數值分析模型與分析方法 19
3.1 橋梁模型簡化與數值模型 19
3.2 運動方程式推導 19
第四章 振動台實驗 26
4.1 實驗設備與實驗試體 26
4.2 實驗量測儀器及配置 27
4.3 系統識別 28
4.4 輸入震波 28
4.5 實驗結果與數值模擬之比對與探討 29
第五章 PFPI與FPS最佳參數搜尋與數值結果探討 48
5.1 PSO-SA混合搜尋法 49
5.1.1 粒子群演算法(PSO) 49
5.1.2 模擬退火法(SA) 52
5.1.3 PSO-SA混合搜尋程序 53
5.2 目標橋梁 54
5.3 支承最佳參數目標函數訂定 55
5.4 PFPI與FPS最佳參數搜尋之參數設定 56
5.4.1 FPS參數設定 56
5.4.2 PFPI參數設定 57
5.4.3 PSO-SA最佳參數之驗證 58
5.5 數值分析之震波 59
5.6 數值分析結果與討論 60
第六章 結論與建議 79
6.1 結論 79
6.2 建議 80
參考文獻 81
附錄 A 88
附錄 B 94
參考文獻 1. Asher, J. W., S. N. Hoskere, R. D. Ewing, D. R. Van Volkinburg, R. L. Mayes and M. Button (1995) “Seismic performance of the base isolated USC University Hospital in the 1994 Northridge earthquake.” ASME, Pressure Vessels and Piping Division (Publication) PVP, Seismic, Shock, and Vibration Isolation, 139: 147-154.
2. Celebi, M. (1996) “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” Structural Design of Tall Buildings, 5(2):95-109.
3. Bozorgnia, Y., S. A. Mahin and A. G. Brady (1998) “Vertical response of twelve structures recorded during the Northridge earthquake,” Earthquake Spectra, 14(3), August, 411-432.
4. Martelli, A. and M. Forni (1998) “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
5. Fujita, T. (1998) “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300.
6. Kelly, J. M. (1998) “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
7. K. Kawashima, “SEISMIC ISOLATION OF BRIDGES IN JAPAN”, Department of Civil Engineering, Tokyo Institute of Technology.
8. 唐治平,陳全和,「隔震橋梁位移控制」,結構工程,第八卷,第三期,pp.19-32,(1993)。
9. 唐治平,李維森,柯孝勳,「橋梁結構耐震、隔震及減震技術之應用研究」,結構工程,第十七卷,第二期,pp.33-52,(2002)。
10. Vasant A. Matsagar and R.S. Jangid, “Seismic Response of Simply Supported Base-Isolated Bridge with Different Isolators”, International Journal of Applied Science and Engineering, vol. 1, pp.53-69 (2006).
11. Naeim, F. and J. M. Kelly “Design of Seismic Isolated Structures”, Chapter 4, John Wiley & Sons, Inc., New York (1999).
12. Yang, Y. B., L. Y. Lu and J. D. Yau “Chapter 22: Structure and Equipment Isolation” Vibration and Shock Handbook, edited by C. W. de Silva, CRC Press, Taylor & Francis Group (2005).
13. 張國鎮,黃震興,蘇晴茂,李森枂,「結構消能減震控制及隔震設計」,全華科技圖書,第七章,pp.7-2~7-32,(2005)
14. Lin, T. W.; C. C.Chern and C. C. Hone “Experimental study of base isolation by free rolling rods.” Earthquake Engineering & Structural Dynamics, 24(12): 1645-1650 (1995).
15. Jangid, R. S. “Stochastic seismic response of structures isolated by rolling rods.” Engineering Structures, 22(8): 937-946 (2000).
16. Tsai, M. H., S. Y. Wu, K. C. Chang and G. C. Lee “Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings.” Engineering Structures, 29(5): 694-702 (2007).
17. Hall, J. F, T. H. Heaton, M. W. Halling, D. J. Wald “Near-source ground motions and its effects on flexible buildings.” Earthquake Spectra, 11, 569-605 (1995).
18. Bozorgnia, Y., S. A. Mahin and A. G. Brady “Vertical response of twelve structures recorded during the Northridge earthquake.” Earthquake Spectra, 14(3), August, 411-432 (1998).
19. Loh, C. H. “Interpretation of structural damage in 921 Chi-Chi-earthquake.” Proceedings of International Workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, Dec. 14-17, pp 5-1 ~ 5-77 (1999).
20. 葉超雄“近斷層建築物設計地震力之研究”,921 集集地震與建築物耐震技術研討會論文集,內政部建研所企劃,台北,1999年12 月。
21. Chai, J. F. and C. H. Loh “Near-fault ground motion and its effect on civil structures.” International workshop on mitigation of seismic effects on transportation structures, July 12-14, Taipei, Taiwan, R.O.C. 70-81 (2000).
22. Liao, W. I., C. H. Loh and S. Wan (2000) “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake,” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep 18-20, Taipei, 371-380.
23. Naeim, F. and J. M. Kelly (1999) Design of Seismic Isolated Structures, Chapter 4, John Wiley & Sons, Inc., New York.
24. 黃震興,張國鎮,葉銘煌,陳建州,「國內首座隔震橋梁設計之探討」,結構工程,第九卷,第二期,pp.15-30,(1994)。
25. 曾榮川,湯維郁,吳淑珍,王泓文,「921大地震台三線石圍橋之災後重建設計」,第五屆結構工程研討會,2000年8月。
26. 陳輝,賴寬陵,陳世超,游明益,「921大地震台三線東豐大橋之災後重建設計」,第五屆結構工程研討會,2000年8月。
27. 林曜滄,蔡吉仁,宋裕祺,范川江,「921大地震台三線烏溪橋之災後重建設計」,第五屆結構工程研討會,2000年8月。
28. 王炤烈,楊世琛,蘇彥彰,李姿瑩,「921大地震台三線名竹大橋之災後重建設計」,第五屆結構工程研討會,2000年8月。
29. Jangid, R. S. and J. M. Kelly (2001) “Base isolation for near-fault motion,” Earthquake Engineering and Structural Dynamics, 30, 691-707.
30. Rao, P. Bhasker and R. S. Jangid (2001) “Performance of sliding systems under near-fault motions,” Nuclear Engineering and Design, 203, 2-3,Jan. 2,2001, 259-272.
31. Lu, L. Y. and W. N. Chang (2000) ”Effect of vertical ground motion on structures with frictional seismic isolators,” The First International Conference on Structural Stability and Dynamics, December 7-9, Taipei, Taiwan.
32. Pranesh, M. and R. Sinha (2000) “VFPI:an isolation device for a seismic deign.” Earthquake Engineering and Structural Dynamics, 29, 603-627.
33. Pranesh, M. and R. Sinha (2002) “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator” Journal of Structural Engineering, 128, 870.
34. Pranesh, M. and R. Sinha (2004) “Behavior of Torsionally Coupled Structures with Variable Frequency Pendulum Isolator” Journal of Structural Engineering, 130, 1041.
35. 盧煉元,施明祥,吳政彥 “變曲率滑動隔震支承之遲滯行為理論與實驗研究”,第七屆結構工程研討會,桃園大溪,8月22-24日,論文編號:H19(2004)。
36. 吳政彥,盧煉元“變曲率滑動隔震結構之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2004)
37. 盧煉元,吳政彥,王健“變曲面滑動隔震系統於近斷層隔震之應用研究(一)”,93年度國科會專題研究計畫成果報告書,計畫編號NSC93-2625-Z-327-002(2005)。
38. 王健,盧煉元“變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2006)
39. Lu, L. Y., J. Wang, S. W. Yeh (2007) “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation” The 4th International Structural Engineering and Construction Conference (ISEC-4), September 26-28, Melbourne, Australia, pp. 1065-1071.
40. Lu, L. Y., T. Y. Lee, S. W. Yeh (2010) “An experimental study on sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, submitted in June 2010, manuscript number EQE-10-132.
41. 盧煉元、施明祥,中華民國發明專利,專利名稱:變曲率隔震器。專利字號:I273158,專利証書日期:96年2月11日,專利期限:民國96年2月11日至114年5月10日止,公開編號:200639305。
42. 曾旭玟,盧煉元“高分子材料於結構隔震技術之應用”,高雄第一科技大學營建工程系碩士論文(2004)
43. 莊玟珊,莊德興“PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文(2007)
44. R.C. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” Proc. Of the Sixth Int. Sym. On Micro Machine and Human Science, pp.39-43,1995
45. R.C Eberhart, Y. Shi, “Particle Swarm Optimization: Developments, applications and resources,” Proc. IEEE Int. Conf. on Evolutionary Computation, pp.81-86, 2001
46. J. Kennedy and R. C. Eerhart, “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. IP, pp.1942-1948, 1995.
47. Y. Shi and R.C. Eberhart, “Parameter Selection in Particle Swarm Optimization,” Evolutionary Programming VII, Springr, Berlin, pp.591-600, 1998.
48. R. C. Fourie and A. A. Groenwold, “The Particle Swarm Optimization,” Struct. Multi. Optim., Vol. 23(4), pp. 259-267, 2002.
49. N. Metropolis, ,Rosenbluth, A. W., Teller, A. H., and Teller, E., “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087?1092 ,1953.
50. S. Kirkpatrick, C.D. Gelatt, and M.P Vecchi, “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp.671?680, 1983.
51. A. Corana, M. Maechesi, C. Martini and S. Ridella, “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm,” ACM T. Math. Software, Vol. 13(3), pp.262-280,1987.
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2010-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明