博碩士論文 973202041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:54.208.73.179
姓名 李柏毅(Bo-Yi L)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 土壤液化評估模式之不確定性
(Modelunc ertainty of simplified methods for assessing liquefaction potential of soils)
相關論文
★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例★ 砂土中模型基樁之單向反覆軸向載重試驗
★ 邊坡穩定分析方法之不確定性★ 不同試驗方法對黏土壓縮與壓密性質之影響
★ 台北盆地黏性土壤不排水剪力強度之研究★ 土壤液化引致地盤永久位移之研究
★ 台北盆地地盤放大特性之研究★ 水力回填煤灰之動態特性
★ 全機率土壤液化分析法★ 黏土壓縮與壓密行為之研究
★ 集集地震液化土之穩態強度★ 現地土壤之液化強度與震陷特性
★ 地震規模修正因子之探討★ 鯉魚潭水庫大壩受震反應分析
★ 全機率土壤液化評估法之研究★ 基樁軸向承載之依時行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 世界各地的學者各自提出不同的液化評估法,這些評估法主要分為三大類,分別根據SPT-N、CPT-qc、震測VS三種現地試驗資料為發展基礎,而各種評估法分析的結果皆不盡相同,發展背景亦有所不同,各評估法是否適用於台灣之地震與地質構造有待研究探討。
本研究以1999年台灣發生的921地震液化案例資料庫為主,此次地震的案例資料庫相當豐富,計有303組的SPT-N案例、135組的CPT-qc案例以及75組的震測VS案例,非常適合做為分析與研究之用;本研究結合了「可靠度分析」與「貝氏定理」兩種機率方法,求得各液化評估法之不確定性,此法之優點在於可將各種液化評估法的不確定性與變異性加以量化,以瞭解各評估方法準確性的差異,並可以模式修正因子將各方法調整至更一致的標準。本研究分析之評估方法包括世界上至要使用之SPT-N法有四種、CPT-qc法有三種、VS法有兩種。
本研究亦試著研究本土學者所發展之雙曲線液化評估法(HBF法)之準確姓,此方法還具有明確的物理意義而非單純的數據統計迴歸;分析結果顯示, SPT-N、CPT-qc與VS三種的HBF法均不遜於世界上現有的至要評估法,建議可供國內工程界參考使用。最後針對HBF法之公式將之修正得更簡單並保持相同的準確性,這樣可使HBF評估法更為方便使用。
摘要(英) Many simpilified methods for assessing liquefaction potential have been proposed by scholars around the world. These simpilified methods are based on SPT-N, CPT-qc and VS parameters from different in-situ tests. The result of analysis and the development background among these simpilified methods are different. Thus, it’s very important to understand if these simpilified methods are suitable to the earthquake enviroment and geology condition in Taiwan.
This research collects a lot of case data from the 1999 Chi-Chi earthquake in Taiwan. There are totally 303 sets of SPT-N data, 135 sets of CPT-qc data and 75 sets of VS data on liquefaction and non-liquefaction case histories. This study combines reliability analysis and Bayes’ theorem to study the accurancy and characteristics of these different methods. The advantage of this analysis method is that it can quantify the uncertainty and accurancy of these simpilified methods by probability concept.
In this research, a simpilified method (HBF method) is proposed owing to its formula having clear physical meaning and simple parameters. The analysis results show that the HBF method has high accurancy and easy to use. Thus, the HBF method is recommended to be used by engineers in Taiwan.
關鍵字(中) ★ 土壤液化
★ HBF法
★ 貝氏定理
★ 可靠度分析
關鍵字(英) ★ reliability analysis
★ Bayes’ theorem
★ HBF method
★ soil liquefaction
論文目次 摘要 i
Abstract ii
誌謝 iii
目 錄 v
圖 目 錄 viii
表 目 錄 xiv
符 號 說 明 xvi
第一章 緒 論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究內容與流程 3
第二章 世界上主要土壤液化評估法回顧 5
2.1前言 5
2.2各學者建議之簡易液化評估法 6
2.2.1 SPT-N液化評估法 6
2.2.2 CPT-qc液化評估法 18
2.2.3 震測VS液化評估法 25
2.3本研究所建議之本土液化評估法 29
2.3.1前言 29
2.3.2本研究建議之SPT-N雙曲線液化評估法 29
2.3.3本研究所建議之CPT-qc雙曲線液化評估法 33
2.3.4本研究所建議之HBF法-VS液化評估法 36
第三章 土壤液化可靠度分析與貝氏定理 41
3.1 前言 41
3.2 可靠度分析 43
3.2.1 介紹 43
3.2.2 分析原理 44
3.2.3 本研究的分析過程 48
3.3 貝氏定理 54
3.3.1 介紹 54
3.3.2 以貝氏定理計算液化機率 55
3.4 模型的不確定性定量 60
3.4.1 介紹 60
3.4.2 分析方法 61
3.4.3 比較各評估法優劣與修正評估法保守度 64
第四章 分析結果 68
4.1 分析案例資料庫簡介 68
4.1.1 SPT-N案例資料 68
4.1.2 CPT-qc案例資料 69
4.1.3 VS案例資料 70
4.2 分析結果 71
4.2.1 SPT-N分析結果 71
4.2.2 CPT-qc分析結果 89
4.2.3 VS分析結果 103
4.2.4 結果比較 112
4.3 本研究HBF法公式之改進研究 123
4.3.1 應力折減因子rd之修正 124
4.3.2 細粒料修正因子KS、KC、KV之修正 129
第五章 結論與建議 136
5.1 結論 136
5.2 建議 138
參考文獻 139
附錄 145
參考文獻 1. Andrus, R.D. and Stokoe, K.H.(2001), “Liquefaction resistance of soils from shear-wave velocity,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp. 1015-1025.
2. Andrus, R.D. and Stokoe, K.H.(1997),”Liquefaction resistance based on shear wave velocity,” Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, pp. 89-128.
3. Cetin, K.O., Seed, R.B., Moss, R.E.S., Kiureghian, A.D., Tokimatsu, K., Harder, L.F. and Kayen, R.E.(2000), “Field case histories for SPT-based in situ liquefaction potential evaluation,” Geotechnical Engineering Research Report No. UCB/GT-2000/09.
4. Duncan, J.M.(2000), “Factors of safety and reliability in geotechnical engineering,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 4, pp. 307-316.
5. Hwang, J.H. and Chen, C.H. (1995), “Study on stress reduction factor rd for liquefaction analysis”, Proceedings of the First Inter-national Conference on Earthquake Geo-technical Engineering, pp. 617-622.
6. Hwang, Jin-Hung, and Yang, Chin-Wen(2001), “Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data ,” Soil Dynamics and Earthquake Engineering, Vol. 21, pp. 237-257.
7. Juang, C.H., Rosowsky, D.V., and Tang, W.H.(1999), “A reliability-based method for assessing liquefaction potential of sandy soils,” Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE, Vol. 125, No. 8, pp. 684-689.
8. Juang, C.H., Cheng, C.J., Tang, W.H., and Rosowsky, D.V.(2000), “CPT-based liquefaction analysis, part 1: Determination of limit state function,” Geotechnique, Vol. 50, No. 5, pp. 583-592.
9. Juang, C.H., Cheng, C.J., Rosowsky, D.V., and Tang, W.H.(2000), “CPT-based liquefaction analysis, part 2: Reliability for design,” Geotechnique, Vol. 50, No. 5, pp. 593-599.
10. Juang, C.H., Yuan, H., Lee, D.H. and Ku, C.S.(2002), “Assessing CPT-based methods for liquefaction evaluation with emphasis on th cases from Chi-Chi, Taiwan, earthquake,” Soil Dynamics and Earthquake Engineering, No. 22, pp. 241-258.
11. Juang, C.H., Yang, S.H. and Yuan, H.(2005), “Model uncertainty of shear wave velocity-based method for liquefaction potential evaluation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 10, pp. 1274-1282.
12. Juang, C.H., Chen, C.J., Jiang, T. and Andrus, R.D.(2000), “Risk-based liquefaction potential evaluation using standard penetration tests,” Can. Geotech. J., Vol. 37, pp. 1195-1208.
13. Juang, C.H., Chen, C.J. and Jiang T.(2001), “Probabilistic framework for liquefaction potential by shear wave velocity,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 8, pp. 670-678.
14. Juang, C.H., Yang, S.H., Yuan, H. and Khor, E.H.(2004), “Characterization of the uncertainty of the Roberson and Wride model for liquefaction potential evaluation,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 771-780.
15. Juang, C.H., Fang, S.Y. and Khor, E.H.(2006), “First-order reliability method for probabilistic liquefaction triggering analysis using CPT,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 3, pp. 337-350.
16. Juang, C.H., Fang, S.Y., Tang, W.H., Khor, E.H., Kung, G.T.C. and Zhang, J.(2009), “Evaluating model uncertainty of an SPT-based simplified method for reliability analysis for probability of liquefaction,” Soils and Foundations, Vol. 49, No. 1, pp. 137-154.
17. Olsen, R.S., and Malone, P.G. (1988), “Soil classification and site characterization using the cone penetration test,” Penetration Testing 1988, ISOPT-1, Edited by De Ruiter, Balkema, Totterdam, Vol. 2, pp. 887-893.
18. Olsen, R.S., and Koester, J.J. (1995), “Prediction of liquefaction resistance using the CPT,” Proceedings, International Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, Vol. 2, pp. 251-256.
19. Phoon, K.K.(2008), Reliability-based design in geotechnical engineering: Computations and applications, Taylor & Francis, New York.
20. Robertson, P.K., and Campanella, R.G.(1983), “SPT-CPT correlations,” Journal of Geothchnical Division, ASCE, Vol. 109, No. 11, pp. 1449-1459.
21. Robertson, P.K. and Campanella, R.G. (1985), “Liquefaction potential of sands using the CPT,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 3, pp. 384-403.
22. Robertson, P.K.(1990), “Soil classification using the CPT,” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151-158.
23. Robertson, P.K. and Wride, C.E.(1998), “Evaluation cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 442-459.
24. Seed, H.B., and Idriss, I.M. (1971), “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 107, No. SM9, pp. 1249-1274.
25. Seed, H.B., and Martin, P.P., and Lysmer, J.(1976), “Pore-water pressure changes during soil liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT4, pp. 1249-1273.
26. Seed, H.B.(1979), “Soil liquefaction and cyclic mobility evaluation for level ground during earthquake,” ASCE, Journal of the Geotechnical Engineering Division, Vol. 105, No. GT2, pp. 201-255.
27. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M.(1985), “The influence of SPT procedures in soil liquefaction resistance evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No.12, pp. 1425-1445.
28. Seed, H.B. and Harder, L.F.(1990), “SPT-Based analysis of cyclic pore pressure generation and undrained residual strength,” in J.M. Duncan ed., Proceedings, H. Bolton Seed Memorial Symposium, University of California, Berkeley, California, Vol. 2, pp.351-376.
29. Shibata, T., and Teparaska, W.(1988), “Evaluation of liquefaction potentials of soils using cone penetration tests,” Soils and Foundations, Vol. 28, No. 2, pp. 49-60.
30. Stark, T.D., and Olson, S.M.(1995), “Liquefaction resistance using CPT and field case histories,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 12, pp. 856-869.
31. Stokoe, K.H., Roesset, J.M., Bierschwale, J.G. and Aoouad, M.(1988), “Liquefaction potential of sands from shear wave velocity,” Proceedings, 9 World Conf. On Earthquake Engineering, Tokyo, Japan, Vol. 3, pp.213-218.
32. Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and Foundations, Vol. 23, No. 4, pp. 56-74.
33. Tokimatsu, K. and Seed, H.B.(1987), “Evaluation of settlements in sands due to earthquake shaking,” Journal of Geotechnical Engineering Division, ASCE, Vol. 113, No. 8, pp. 861-878.
34. Tokimatsu, K., Yoshimi, Y. and Ariizumi(1990), “ Evaluation of liquefaction resistance of sand improved by deep vibratory compaction,” Soils and Foundations, Vol. 30, No. 3, pp. 153-158.
35. Tokimatsu, K. and Uchida, A.(1990), “Correlation between liquefaction resistance and shear wave velocity,” Soils and Foundations, Vol. 30, No. 2, pp. 33-42.
36. Youd, T.L., and Idriss, I.M.(1997), Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022.
37. Youd, T.L., and Idriss, I.M.(2001), “Liquefaction resistance of soils: summary report form the 1996 NCEER and 1998 NCEER/NSF workshop on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 4, pp. 297-312.
38. 黃一正(2002),「全機率土壤液化評估法之研究」,碩士論文,國立中央大學土木工程學系,中壢。
39. 黃俊鴻、陳正興(1998),「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁。
40. 黃俊鴻、楊志文、譚志豪、陳正興(2000),「集集地震土壤液化之調查與分析」,地工技術,第77期,第51-64頁。
41. 黃俊鴻、楊志文(2001),「以集集地震案例資料建立土壤臨界液化強度曲線」,中國土木水利工程學刊,第13卷,第二期,第339-352頁。
42. 黃富國(1996),「土壤液化之危害度分析」,博士論文,國立台灣大學土木工程學研究所,臺北。
43. 楊志文(2003),「全機率土壤液化評估法之研究」,博士論文,國立中央大學土木工程研究所,中壢。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2011-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明