博碩士論文 973202042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.220.11.34
姓名 鄭鈺諠(Yu-hsuan Cheng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不飽和夯實土壤之動態性質
(Dynamic properties of unsaturated compacted soils)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 土石壩材料之動態性質是土石壩受震反應分析中的重要參數,當土石壩興建完成蓄水後,部分壩體在水面之上,此部分的土石材料為不飽和,而不飽和區之夯實土石材料的動態性質鮮少有文獻探討。本研究之試驗土料來源取自於雲林湖山水庫計畫借土區之兩種殼層材料SM、ML及心層材料CL,試驗針對不飽和夯實土壤,利用共振柱試驗儀求取不飽和試體的動態性質曲線,與飽和試體的動態試驗結果比較探討,並找出最大剪力模數出現最大值時所對應的飽和度,即稱最佳飽和度。
三種土樣的試驗結果顯示,隨著圍壓的增加,動態剪力模數與門檻剪應變皆會增加;隨著試體飽和度的降低,動態剪力模數會增加,而門檻剪應變會隨著飽和度減小而增加。由飽和度與最大剪力模數之關係可看出,夯實SM及ML試體的最佳飽和度出現在4-5 % 左右,夯實CL試體在飽和度3-4 %左右,將試體飽和度與最大剪力模數的關係迴歸出關係方程式,與試體飽和時最大剪力模數的經驗公式結合,整理出各土樣不飽和夯實試體之最大剪力模數的方程式,以供工程界選擇土壤動態性質參數之依據。
摘要(英) Dynamic properties of compacted soils are key parameters in analyzing seismic response of compacted earth dams. The compacted soil of earth dam is composed of saturated part and unsaturated part. However, there’re few literature studying the unsaturated part of compacted soils. This paper aims to analyze the dynamic properties of unsaturated compacted soils. The test materials include compacted SM, ML and CL soils. The dynamic properties of these soils are measured by resonant column test (RCT). The measured properties include the maximum shear modulus, normalized shear modulus, and damping ratio curves in the shear strain range of 〖10〗^(-4)~〖10〗^(-1) % . The results shows that shear modulus and threshold shearing strain are increased with confining pressure. As degree of saturation decreases, shear modulus are significantly increased, but threshold shearing strain is decreased. Therefore, threshold shearing strains of specimens of any saturation degree are almost the same when confining pressure is high. The test results could be combined with current results of saturated specimens. We can get the regressive formula for the maximum shear modulus and use it for future study on seismic response of compacted earth dams.
關鍵字(中) ★ 不飽和試體
★ 共振柱試驗
★ 剪力模數
★ 阻尼比
關鍵字(英) ★ Shear modulus
★ Damping ratio
★ Unsaturated specimen
★ Resonant column test
論文目次 摘 要 I
Abstract II
目 錄 III
表 目 錄 VII
圖 目 錄 VIII
符號說明 XIII
第一章 緒 論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究方法與內容 2
1.4 論文內容 4
第二章 不飽和土壤之文獻回顧 6
2.1 不飽和土壤的組成 6
2.2 土壤吸力理論與土壤-水分特性曲線 7
2.2.1 土壤吸力理論 7
2.2.2 土壤水分特性曲線 10
2.3 不飽和土壤應力狀態 12
2.4 不飽和土壤的剪力強度 13
2.5 土壤吸力計理論 14
2.5.1 吸力計原理與構造 15
第三章 共振柱動態試驗之文獻回顧 18
3.1 土壤動態性質試驗方法 18
3.2 共振柱理論 18
3.2.1 共振柱理論基本假設 18
3.2.2 共振柱水平扭轉波傳方程式 19
3.2.3 由彈性理論計算土壤阻尼比 24
3.3 動態性質的影響因子 26
3.3.1 飽和土壤剪力模數的影響因子 26
3.3.2 不飽和土壤剪力模數之影響因子 30
3.3.3 阻尼比的影響因子 39
第四章 室內實驗 40
4.1 現地廠址與試驗土樣 40
4.2 基本物理性質試驗 42
4.3重模夯實試體 42
4.3.1 單位體積夯實能量概念 42
4.3.2 特製夯模 43
4.3.3 重模夯實試體步驟 44
4.3.3 不飽和試體的製作 47
4.4 共振柱動態試驗 49
4.4.1 壓力供給系統 50
4.4.2 電腦控制系統 52
4.4.3 驅動系統 53
4.4.4 量測系統 54
4.4.5 動態性質試驗 55
4.5 土壤吸力計試驗 60
4.5.1 土壤吸力計 60
4.5.2 吸力計試驗 61
第五章 試驗結果與討論 63
5.1 基本物理性質試驗結果 63
5.2 不飽和夯實試體均勻度之探討 66
5.3 共振柱動態試驗結果 68
5.3.1 圍壓與試體飽和度之變化關係 68
5.3.1 剪力模數與剪應變振幅之關係 70
5.3.2 正規化剪力模數比與剪應變振幅之關係 80
5.3.3 阻尼比與剪應變之關係 86
5.4 土壤吸力計試驗結果 92
5.5 試驗資料與文獻比較 93
5.5.1 試驗資料與不飽和土壤文獻比較 93
5.5.2 試驗資料與飽和夯實土壤文獻比較 97
第六章 結論與建議 109
6.1 結論 109
6.2 建議 113
參考文獻 114
參考文獻 1. 王金山,「共振柱試驗之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢(2004)。
2. 吳嘉賓,「土石壩受震應變潛能法之整合研究」,博士論文,國立中央大學土木工程研究所,中壢(2009)。
3. 簡才貴,「土石壩材料之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢(2006)。
4. 蕭宗璿,「不飽和土壤濕化水份特性曲線影響因子之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2006)。
5. 連健淵,「不飽和土壤變形參數之研究」,碩士論文,國立交通大學土木工程研究所,新竹(2000)。
6. 李宛瑜,「土壤吸力對緩衝材料飽和行為之影響及模擬研究」,碩士論文,國立中央大學土木工程研究所,中壢(2007)。
7. 林建良,「不飽和凝聚興路基土壤回彈模數之研究」,碩士論文,國立台灣科技大學營建工程研究所,台北(2005)。
8. 肖元清,「基質吸力對不飽和土抗剪強度影響的試驗研究」,三峽大學學報(自然科學版),第27卷,第4期(2005)。
9. 經濟部水利署中區水資源局網站。
10. Allam, M.M., and Sridharan, A., “Stress present in unsaturated soil,” Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 11, pp. 1395-1399 (1987).
11. Bishop, A.W., Alpan, I., Blight, G.E., and Donald, I.B., “Factors Controlling the Strength of Partly Saturated Cohessive Soils,” ASCE, Research Conference on Shear Strength of Cohessive Soils, pp. 503-532 (1959).
12. Chen, Y.J., and Yu, P.J., “Pore pressure dissipation features of an unsaturated compacted soil,” Proc. of the 1st Intl. Conf. on unsaturated soils, Vol. 2, pp. 439-445 (1995).
13. Croney, D., and Coleman, J.D., “Soil thermodynamics applied to the movement of moisture in road foundations,” Proc. 7th Int. Cong. Appl. Mech., Vol. 3, pp. 163-177 (1948).
14. Fredlund, D.G., and Morgenstern, N.R., “Stress state variables for unsaturated soils,” Journal of Geotechnical Engineering, ASCE, Vol. 5, No. 103, pp. 447-456 (1977).
15. Hardcastle, J.H., and Sharma, S., “Shear modulus and damping of unsaturated loess,” Proceedings of the 3th decennial Geotechnical Earthquake Engineering and Soil Dynamics Conference, Seattle, Washington, August 3-6, pp. 178-188 (1998).
16. Hardin, B.O., and Black, W.L., “Vibration modulus of normally consolidated clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No, SM2, pp. 353-369 (1968).
17. Hardin, B.O. and Drnevich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692 (1972).
18. Hardin, B.O., and Richart, F.E., “Elastic wave velocities in granular soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65 (1963).
19. Inci, G., Yesiller, N., and Kagawa, T., “Experimental investigation of dynamic response of compacted clayey soils,” Geotechnical Testing Journal, Vol. 26, No.2, pp. 125-141 (2003).
20. Isenhower, W.M., and Stoke, K.H., “Strain rate dependent shear modulus of San Francisco bay mud,” Proceeding of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, University of Missouri-Rolla, Vol. 2, pp. 597-602 (1981).
21. Kim, D.S., Seo, W.S., and Kim, M.J., “Deformation characteristics of soils with variations of capillary pressure and water content,” Soils and Foundations, Vol. 43, No. 4, pp. 71-79 (2003).
22. Kohgo, Y., Nakano, M., and Miyazaki, T., “Theoretical aspects of constitutive modeling for unsaturated soils,” Soils and Foundations, Vol. 33, No. 4, pp. 49-63 (1993).
23. Kokusho, T., “Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 20, No. 2, pp. 45-60 (1980).
24. Kokusho, T., Yoshida, Y., and Esashi, Y., ”Dynamic properties for soft clay for wide strain range,” Soils and Foundations, Vol. 22, No. 4, pp. 1-18 (1982).
25. Krahn, G., and Frendlund, D., “On total matric and osmotic suction,” Journal of Soil Science, Vol. 114, No. 5, pp. 339-348 (1992).
26. Lu, N., and Likos, W.J., “Unsaturated Soil Mechanics,” John Wiley and Sons, Inc., New York (2004).
27. Mancuso, C., Vassallo, R., and d’Onofrio, A., “Small Strain Behavior of a Silty Sand in Controlled-Suction Resonant Column-Torsional Shear Tests,” Canadian Geotechnical Journal, Vol. 39, pp. 22-31 (2002).
28. Marinho, E.A.M., Chandler, R.J. and Crilly, M.S., “Stiffness measurements on an unsaturated high plasticity clay using bender elements,” Proceedings of the First International Conference on Unsaturated Soils, UNSAT’95, Vol. 2, pp. 535-539 (1995).
29. Miller, C. J., Yesiller, N., Yaldo, K., and Merayyan, S., “Impact of soil type and compaction conditions on soil water characteristic,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 9, pp. 733-742 (2002).
30. Ng,. C.W.W., Xu, J., and Yung, S.Y., “Effects of wetting-drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains,” Canadian Geotechnical Journal, Vol. 46, pp. 1062-1076 (2009).
31. Qian, X., Gray, D.H., and Woods, R.D., “Resonant Column Tests on Partially Saturated Sands,” Geotechnical Testing Journal, GTJODJ, Vol. 14, No. 3, pp. 266-275 (1991).
32. Rao, S.M., and Revanasiddappa, K., “Role of matric suction in collapse of compacted clay soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 1, pp. 85-90 (2000).
33. Seed, H.B., and Idriss, I.M., “Shear Moduli and Damping Factor for Dynamic Response Analysis,” Report No. EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, California (1970).
34. Skierucha, W., “Design and performance of psychrometric soil water potential meter,” Sensors and Actuator A 118, pp. 86-91 (2005).
35. Tinjum, J.M., Benson, C.H., and Blotz, L.R., “Soil-Water Characteristic Curve for Compacted Clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, no. 11, pp. 060-1069 (1997).
36. Wu, S., Gray, D.H., and Richart, F.E., Jr., “Capillary effects on dynamic modulus of sand and silts,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 9, pp. 1188-1203 (1984).
37. Yang, R.R., Huang, W.H., and Tai, Y.T., “Variation of resilient modulus with soil suction for compacted subgrade soils,” 84th Annual Meeting of Transportation Research Board, CD-ROM. National Research Council, Washington, D. C. (2005).
38. Zen, K., Umehara, Y., and Hamada, K., “Laboratory tests and in-situ seismic survey on vibratory shear modulus of clayey soils with various plasticities,” Proceedings of the Fifth Japan Earthquake Engineering Symposium, Tokyo, Japan, pp. 721-728 (1978).
指導教授 鄭鈺諠(Yu-hsuan Cheng) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明