博碩士論文 973202052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.135.185.194
姓名 王俊堯(Chun-yao Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性廢棄物最終處置回填材料於近場環境下之長期穩定性研究
(Long-term stability of backfill material in the near field of a low-level radwaste disposal site)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將以台東樟原村日興土與美國懷俄明州BH膨潤土,混合台東地區硬頁岩碎石級配料,調配成不同黏土-碎石含量之回填材料,改變回填材料含水量與調整最大碎石粒徑,進行基本材料性質、改良式夯實、自由回脹應變、定體積回脹壓力、水力傳導度等試驗,並探討其近場環境可能影響回填材料功能的各種因素,包含在混凝土工程障壁與封閉用回填材料界面處,以電滲加速試驗來了解混凝土對回填材料性質的改變,此外,低放廢棄物處置場場址鄰近濱海地區的可能性很高,處置場封閉後勢必會遭受地下水入侵之影響,調配含鹽溶液進行海水入侵到處置場之近場環境的模擬,對回填材料之工程性質與功能產生之影響。最後依據試驗結果歸納其功能特性,了解回填材料於近場環境下的長期穩定性,另一方面掌握本土回填材料之工程性質,與國際間使用之回填材料加以比較。
試驗結果顯示(1)BH 膨潤土回填材料於改變回填材料含水量與調整最大碎石粒徑下之回脹潛能皆遠高於日興土回填材料;(2)日興土與BH 膨潤土回填材料於含鹽溶液中回脹應變量均較在純水溶液中要大幅降低;(3)在電滲加速試驗後續分析中,由離子定量與回脹潛能試驗得知,二種膨潤土回填材料隨電滲時間越長,回脹量越低,且越靠近混凝土接觸面之回填材料,其鈣/鈉離子比值差距越大;( 4 ) 膨潤土回填材料隨電滲時間越長,其越靠近混凝土接觸面之回填材料pH值越低,距離越遠pH值越高;( 5 ) 二種膨潤土回填材料在電滲加速試驗後續分析TGA及XRD 中,曲線差異大部份都不明顯。
摘要(英) Zhishin clay (日興土) and Black Hill bentonite are used as raw clay materials in this study. These clays are mixed with Taitung area hard shale to produce the backfill material for low-level radioactive wastes disposal site. Engineering characteristics and barrier functions of backfill materials including compaction, free swelling, swelling pressure, and hydraulic conductivity are obtained in the laboratory for evaluation.
In order to have improved uniformity, the maximum size of the crushed gravel is reduced to 4.75 mm and 2.36 mm to produce the backfill materials. The interaction between concrete barrier and the backfill material is simulated by an accelerated migration test to investigate the effect of concrete on the expected functions of backfill material. Saline water intrusion into the near-field of disposal site is simulated to understand the engineering properties of the backfill material in such scenarios.
The results show that the reduction in maximum size of crushed gravel produces similar maximum unit weight, higher swelling potential and reduced hydraulic conductivity. Backfill material prepared using BH bentonite has higher swelling potential than that using Zhishin clay. The use of saline water as intruding solution into the backfill material results in a decrease in the swelling potential and some increase in hydraulic conductivity.
Finally, the interface between the concrete barrier and backfill material was simulated by an accelerated electro-osmosis test. The results show some decrease in swelling potential for the backfill material near the interface. Also, backfill material close to the contact of the concrete exhibits larger change in the ratio of calcium/sodium concentration, due to the release of calcium ions from the concrete barrier.
關鍵字(中) ★ 電滲加速試驗
★ 海水入侵
★ 回填材
★ 回脹潛能
★ 低放廢棄物
關鍵字(英) ★ low-level radioactive waste
★ backfill material
★ swelling behavior
論文目次 摘 要 I
Abstract II
致謝 II
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究方法與範圍 2
1.4試驗流程 3
第二章 文獻回顧 5
2.1 低放廢棄物處置概念 5
2.1.1 低放廢棄物最終處置 5
2.1.2 低放廢棄物最終處置多重障壁概念 8
2.1.3 國內低放最終處置場設計概念 9
2.2 低放回填材料所需具備之功能 10
2.3 回填材料之體積穩定性 11
2.3.1 膨潤土礦物之性質與構造 11
2.3.2 膨潤土水化機理 13
2.3.3 分散與絮凝結構 14
2.4 黏土之回脹潛能 15
2.4.1 回脹發生之機制 15
2.4.2 回脹行為模式 16
2.4.3 影響回脹之因素 18
2.5 水力傳導度理論 23
2.5.1 達西定律(Darcy’s Law) 23
2.5.2 達西定律之適用性 23
2.5.3 影響水力傳導度的因素 24
2.6 回填材料與混凝土接觸交互作用 28
2.6.1 離子交換 28
2.6.2 離子交換之因素 30
第三章 研究計畫 37
3.1試驗材料 37
3.1.1 膨潤土材料 37
3.1.2 粒料硬頁岩 38
3.2材料基本土壤力學性質分析方法 38
3.2.1 自然含水量 39
3.2.2 比重試驗 39
3.2.3 粒徑分析試驗 39
3.2.4 阿太堡限度試驗 39
3.2.5活性 39
3.3材料準備 39
3.4改良式夯實試驗 41
3.5回脹試驗 42
3.5.1 回脹試驗方法選擇 42
3.5.2 回脹試體製作 42
3.5.3 自由回脹應變試驗 45
3.5.4 定體積回脹壓力試驗 47
3.6 水力傳導性質量測 50
3.6.1 試驗方法選擇 50
3.6.2 剛性壁水力傳導度試驗 51
3.6.2.3 試驗設計 54
3.7模擬處置場之近場環境 56
3.7.1 海水入侵 56
3.7.2 試驗方法 57
3.7.3 電滲加速試驗(回填材料與混凝土接觸交互作用) 57
3.7.4 電滲加速試驗土壤後續分析 62
3.8試驗總整理 67
第四章 試驗結果與分析 68
4.1基本材料性質分析 68
4.2 夯實特性 69
4.2.1 改變回填材料最大碎石粒徑級配對夯實特性之影響 70
4.3回脹潛能 73
4.3.1 自由回脹應變 73
4.3.2 定體積回脹壓力 78
4.4水力傳導度 83
4.4.1 改變回填材料含水量之水力傳導度 83
4.4.2 改變最大粒徑碎石級配之水力傳導度 88
4.5含水狀態及最大粒徑對回填材料之影響 92
4.5.1 含水狀態OMC與OMC-3%對回填材料之影響 92
4.5.2 最大粒徑對回填材料之影響 93
4.6模擬處置場海水入侵之效應 94
4.6.1 自由回脹應變 94
4.6 2 定體積回脹壓力 97
4.6.3 剛性壁水力傳導度試驗 99
4.7回填材料與混凝土接觸交互作用之分析 103
4.7.1 離子定量 103
4.7.2 回脹潛能 107
4.7.3 pH值 109
4.7.4 熱重分析(TGA) 111
4.7.5 X光繞射分析(XRD) 115
第五章 結論與建議 119
5.1 結論 119
5.2 建議 121
參考文獻 122
附錄 130
參考文獻 1.王欣婷,(2003) ,「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
2.田永銘、李德河,(1994),「黏土質材料的吸水回脹速率」,中國土木水利工程學刊,第六卷,第二期,第223-232頁。
3.台灣電力公司,(2009)低放射性廢棄物最終處置設施,概念設計(B版)。
4.台灣電力公司,(2008)低放射性廢棄物最終處置設施,概念設計(A版)。
5.台灣電力公司,(2007)低放射性廢棄物最終處置計畫書(修定版)。
6.台灣電力公司,(2004)低放射性廢棄物最終處置計畫書。
7.沈茂松,(1988)實用土壤力學實驗,增訂第七版,文笙書局。
8.汪信寶,(2004),「日興土活化改質作為緩衝材料之回脹性質改善效應」,碩士論文,國立中央大大學土木工程研究所,中壢
9.柯甫松,(1997),「放射性廢料處置場回填材料之工程性質」,碩士論文,國立中央大大學土木工程研究所,中壢。
10.鄒惠如,(2005),「最終處置場黏土障壁材料之傳輸行為研究」,碩士論文,國立中央大學土木工程研究所,中壢。
11.莊文淵,土壤材料之核種遷移吸附特性試驗與研究,核能研究所內部
12.報告,INER-T2443,第3-1 頁,(1998)。
13.陳志霖,(2000),「放射性廢料處置場緩衝材料之力學性質」,國立中央大學土木工程系碩士論文,中壢。
14.陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
15.萬鑫森,(1991),基礎土壤物理學,茂昌圖書。
16.陳炳坤,(2006) ,「高放射性廢棄物最終處置場緩衝材之膨 脹穩定性與微觀結構研究」,碩士論文,國立中央大大學土木工程研究所,中壢。
17.吳冠漢,(2004),「緩衝材料於近場環境下之體積穩定性研究」,碩士論文,國立中央大大學土木工程研究所,中壢
18.潘奕銘,(2007),「低放射性廢棄物處置場混凝土障壁材料溶出劣化效應評估」,碩士論文,國立中央大大學土木工程研究所,中壢
19.劉隆運,(2010),「低放射性廢棄物最終處置場回填材料之配方與工程特性研究」,碩士論文,國立中央大大學土木工程研究所,中壢
20.謝博庭,(2007),「高嶺土與氯化鈣在電場作用下之行為探討」,碩士論文,國立台灣科技大學營建工程系,台北
21.趙杏媛、張有瑜,(1990),黏土礦物與黏土礦物分析,海洋出版社,北京。
22.洪昆煌、王明光、陳尊賢、賴朝明、何聖賓、李達源,土壤化學,國立編譯館,(1996)。
23.吳平霄、張惠芬、王輔應、郭九杲、趙文霞,(1999),「蒙脫石熱處理產物的掃描電鏡研究」,礦物岩石,第十九卷,第一期,第19-23頁。
24.施國欽,(2005),大地工程學(一)土壤力學篇,第五版,文笙書局。
25.中華土壤肥料學會,(1995),「土壤分析手冊」,中華土壤肥料學會。
26.劉東山,蔡昭明,(1993),放射性廢料管理,曉園出版社,台北。
27.劉慧玲,(2001),「台東樟原黏土資源之有機黏土備置研究」,碩士論文,國立成功大學資源工程學系,臺南。
28.鄭文龍、吳偉康,(1994)「紅土礫石材料之夯實特性及施工控制」,土木水利,第二十一卷,第一期,第17-30頁。
29.緒方信英、小峯秀雄、申島均、長沢達朗、石井卓,(1994)「所定の透氷係数を有するべントナイト混合土の配合設定方法」,粘土科學,第34卷,第2号,第95-101頁(in Japan)。
30.Abdelmalek B. , Stephan J. , Thaveesak V. , (2007)” Investigation of the effects and degree of calcium exchange on the Atterberg limits and swelling of geosynthetic clay liners when subjected to wet–dry cycles”, Geotextiles and Geomembranes , 25, 170–185
31.Ahn,H. S. and Jo, H. Y. (2009). “Influence of exchangeable cations on hydraulic conductivity of compacted bentonite.” Applied Clay Science, 44, 144-150.
32.Ashayeri, I. and Yasrebi, S. (2009). “Free-Swell and Swelling Pressure of Unsaturated Compacted Clays; Experiments and Neural Networks Modeling.” Geotechnical and Geological Engineering, 27(1), 137-153.
33.Arnold, B. W., Knowlton R. G., Schelling F. J., Mattie P. D., Cochran, J. C. and JowH. N. (2007). “Taiwan industrial cooperation program transfer for low-level radioactive waste final disposal-phase I ” SAND2007-0131, Sandia National Laboratories, Albuquerque, New Mexico.
34.Avner, M., and Petteri, P. (1996), “Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions,”Technical Research Centre of Finland Espoo.
35.Borgesson, L., Johannesson, L. E. and Gunnarsson, D.(2003), “Influence of Soil Structure Heterogeneities on the Behaviour of Backfill Materials Based on Mixtures of Bentonite and Crushed Rock”, Applied Clay Science 23: 121-131.
36.Benson, C. H., Zhai, H., and Wang, X. (1994). ”Estimating Hydraulic Conductivity of Compacted Clay Liners,” Journal of Geotechnical Engineering, ASCE, 120, 366-387.
37.Bill W. Arnold, Robert G. Knowlton, F. Joseph Schelling, Patrick D. Mattie,John C. Cochran, and Hong-Nian Jow , (2001) , ” Taiwan Industrial Cooperation Program Technology Transfer for Low-Level Radioactive Waste Final Disposal –Phase I”, ASCE
38.Boynton, S. S., and Daniel, D. E., (1985) “Hydraulic Conductivity Test on Compacted Clay.” Journal of Geotechnical Engineering, ASCE, 111, 465-477.
39.Choi, J., Kang, C.H., and Whang, J. (2001). “Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.” Journal of Environmental Science and Health, Part AToxic/Hazardous Substance & Environmental Engineering, 26(5),689-714.
40.Chung, R. M. and Yokel, F. Y. (1982). “Reference Laboratory Testing for Backfill.” Scientific Basis for Nuclear Waste Management, 379-387.
41.Dixon,D.A., Gray,M.N., and Thomas.A.W. (1984). “A Study of the Compaction Properties of Potential Clay-Sand Buffer Mixtures for Use in Nuclear Fuel Waste Disposal.” Engineering Geology, 21, 247-255.
42.Engelhardt, I. and Finsterle, S. (2003). “Thermal-Hydraulic Experiments with Bentonite/Cruched Rock Mixtures and Estimation of Effective parameters by Inverse Modeling.” Applied Clay Science, 23, 111-120.
43.Grim, R.E. (1968). Clay mineralogy, McGraw-Hill Book Co., New York.
44.Greene-Kelly, R. (1952). “Irreversible dehydration in montmorillonite.”Clay Minerals Bulletin, 221-227.
45.Holopainen, P. (1985). “Crushed Aggregate-Bentonite Mixtures as Backfill Material for Repositories of Low-and Intermediate Level Radioactive.” Engineering Geology, 21, 239-245.
46.Han, K., Heinonen, W. J. and Bonne A. (1997), “Radioactive Waste Disposal:Global Experience and Challenges,” IAEA Bulletin, 39, 33-41.
47.Haverkamp, B. and E. Biurrun (2005) : Safety Assessment and justification of the proposed solution for closure. DBE TECHNOLOGY Report DBE-RCH-TSK-07.
48.ISRM, 1981. Rock Characterization, Testing and Monitoring, ISRM suggested methods. ed. E.T. Brown.publ. Pergamon Press, Oxford, pp. 211
49.Jo, H.Y., Katsumi, T., Benson, C.H., and Edil, T.B. (2001). “Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 557-567.
50.Komine, H. (2004). “Simplified Evaluation for Swelling Characteristics of Bentonites.” Engineering Geology, 71, 3-4.
51.Komine, H. (2004).“Simplified Evaluation on Hydraulic Conductivities of Sand-Bentonite Mixture Backfill.”Applied Clay Science, 26, 1-4, 13-19.
52.Lee, O. J., Cho, W. J. and Chun K. S. (1999). “Swelling Pressures of a Potential Buffer Material for High-Level Waste Repository.” Journal of Korean Nuclear Society, 31(2), 139-150.
53.Lambe, T. W., (1958) “The Engineering Behavior of Compacted Clay.” Journal of the Soil Mechanics and Foundations Division., ASCE, 84, 1654, 1-35
54.Madsen, F.T., and Muller-Vonmoos, M.(1989), “The swelling behavior of clays.” Applied Clay Science, Vol. 4, pp. 143-156.
55.Meyer, D., Howard, J.J. (1983). Evaluation of clays and clay minerals for application to repository sealing, Office of Nuclear Waste Isolation Technical Report ONWI-486, 12-30.
56.Mishra, A. K., Dhawan, S., and Rao, S. M. (2008). “Analysis of Swelling and Shrinkage Behavior of Compacted Clays.” Geotechnical and Geological Engineering, 26(3), 289-298.
57.Moon, S., Nam, K., Kim, J. Y., Hwan, S. K., Chung, M. (2008). “Effectiveness of Compacted Soil Liner as a Gas Barrier Layer in the Landfill Final Cover System.” Waste Management, 28(10), 1909-1914.
58.Mitchell, J.K. (1993) Fundamentals of Soil Behavior. 2nd Edition. John Wiley & Sons Inc., NY.
59.Newman, A.C.D. (1987). Chemistry of clays and clay minerals,Mineralogical Society Monograph, No. 6, Longman Scientific & Technical, Wiley-Interscience, New York.
60.Norrish, K., and Quirk, J. (1954), “Crystalline swelling of montmorillonite, use of electrolytes to control swelling,” Nature,Vol. 173, pp. 255-257.
61.Naser A. Al-Shayea., (2001) “The Combined Effect of Clay and Moisture Content on the Behavior of Remolded Unsaturated Soils. ” Engineering Geology, 62(4), 319-342.
62.Onoue, A., Horie,Y., Ishii,T., Ogata, N. and Komine, H. (1993) “Consolidation and Swelling Properties of Bentonite-Sand Mixture for Sealing Low-Level Radioactive Waste Repositories. ” Trans, 12th Ind. Conf.on SMIRT, Session N03/2,351-356.
63.Ogata, N. and Komine, H. (1993) “Permeability Changes of Bentonite-Sand Mixture Before and After Swelling. ” Trans, 12th Ind. Conf.on SMIRT, Session N03/3, 357-362.
64.Pusch, R., (2001).The Buffer and Backfill Handbook Part 2: Materials and Techniques, SKB TR-02-12.
65.Pusch, R., (1994): Waste Disposal in Rock, Developments in Geotechnical Engineering, 76. Elsevier Publ. Co.
66.Sivapullaiah, P.V., Sridharan, A., and Stalin, V.K. (1996). “Swelling Behaviour of Soil-Bentonite Mixtures.” Canadian Geotechnical Journal, 33, 808-814.
67.Shelley, T. L., and Daniel, D. E., (1993) “Effect of Gravel on Hydraulic Conductivity of Compacted Soil Liners.” Journal of Geotechnical Engineering, ASCE, 119, 54-68.
68.Seed, H. B., Woodware, R. J., and Lundgren, R., (1962) “Prediction of Swelling Potential for Compacted Clays.” Journal of the Soil Mechanics and Foundation Engineering , ASCE, 88, 53-87.
69.Takafumi S. , Yukikazu T. (2008)” Use of a migration technique to study alteration of compacted sand–bentonite mixture in contact with concrete”, Physics and Chemistry of the Earth, 33 ,S276–S284
70.Taylor, R.K. and Cripps, J.C., (1987), “Weathering Effects: Slopes in Mudrocks and Over-Consolidated Clay.” Chapter 13, Edited by Anderson M.G. and Richard K.S., John Wiley & Sons.Yong R. N., and Benno, P. W. (1975). Soil Properties and Behavior Elsevier, NewYork.
指導教授 黃偉慶(Wei-hsing Huang) 審核日期 2011-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明